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Cryptography

Suppose there are two people, Alice and Bob. Alice wants to send Bob a
message over an insecure channel, but wants only Bob to read the
message she sends.

If Alice just sends the message plainly over an insecure channel, then a

third party can intercept the transmission and read the message! How can
Alice send Bob this message without anybody else reading it?
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Cryptography

Instead of sending the message plainly, Alice is going to encrypt the
message using some information called a key, and then send the message
to Bob.

When Bob receives the message, he will decrypt the information with a
secret key, and can then read the message. However, if a third party
without the secret key intercepts the message, they can not decrypt and
read the message.

When Alice and Bob share the same secret key, we call this symmetric
key cryptography. When the key Alice uses is different from Bob and is
public information, we call this public key cryptography.
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Cryptography (More Formally)

Let Enc: K1 x M xR — C. For any m € M and k € K1, one picks a
random r € R and computes ct = Enc(m, k, r) € C. We call Enc an
encryption function or encryption algorithm, m the message (or
plaintext), k the key, and ct the ciphertext. When |R| =1, we call this
deterministic encryption. When |R| > 1, we call this probabilistic
encryption.

Let Dec : C x Ko — M. For inputs ct € C, sk € K5, and corresponding
output m € M, we write Dec(ct, sk) = m. We cal Dec a decryption
function or decryption algorithm. Our goal is to have the following
property.

Dec(Enc(m,k,r),sk) = m
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Homomorphic Encryption

The goal of homomorphic encryption is to obtain a homomorphism in
the message slot in the encryption function.

For two messages mg and m; in M, a public or private key k € I, and
random ry, r; € R we have that for some rn, 3 € R,

Enc(mo, k, ro) + Enc(my,k, r1) = Enc(mg + my, k&, r2)
Enc(mo, k, ro)Enc(ml, k, r1) = Enc(moml, k, r3)

This property allows one to perform computations on encrypted data
without needing to first decrypt it. Current homomorphic encryption
schemes are largely based on error correction.
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Notation

Define Zq as the ring of centered representatives as

Zq =17ZN(—q/2,q/2]. When given an integer x, we denote [x]q as the
reduction of x into the interval Z, such that g divides [x]; — x. When x is
a polynomial or vector, [x]q means applying [-]q to each coefficient.

We define R, as the ring
Rn := Z[x]/(®(x))

where ®(x) is an mth cyclotomic polynomial of degree n, a power of two.
Namely, ®(x) = x" + 1. Similar to R,, we define R, 4 as the ring

Rn.q = Zq[x]/(®(x))
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Notation

For any ¢ € R, the infinity norm of c is defined as |||, = |c|. For any
polynomial f(x) = 3K a;x’ with a; € R, the infinity norm of f(x) is
defined as

1) loe = max{lanl, ..., |ak|}

therefore using centered representatives, for any f(x) € R, g we have
1)l < a/2.

The symbols |-| and [-] will denote floor and ceiling respectively, whereas
|-] will denote rounding to the nearest integer.

For a set S and a given probability distribution x, we let x(S) denote that
distribution on S. We will denote U(S) as a uniform distribution on S.
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Learning With Errors (LWE)

Homomorphic encryption is based off the learning with errors (LWE)
problem.

Choose s € Zg secret. Sample e < x(Z) from some desired distribution
such that |e| < p, where p is a small parameter. Then, we sample a
uniform random a < U(Zg) and calculate b via

b= (a,s)+e modgq
We call (a, b) an LWE sample.
LWE Problem: Given many LWE samples, find s.

The LWE problem is at least as hard as many worst-case hard lattice
problems.
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Ring Learning With Errors (RLWE)

We can define an analogous problem with rings known as the ring
learning with errors (RLWE) problem.

Choose secret s € Rp, 4 and sample an error e <— x(R,) such that
llell o < p. Sample a - U(Ry,q) and compute b € R, 4 via

b=as+e mod (P(x),q)

The ordered pair (a, b) € R3  is called an RLWE sample. The RLWE
problem can be defined in the same way as the LWE problem.

The security of cryptosystems we will use rely on the hardness of RLWE.
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Basic Homomorphic Encryption

Three main schemes: BFV and BGV (exact), and CKKS (approximate).
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BFV Public Key Generation

First the BFV scheme.

Choose s € R, 3 secret. Sample random a <— U(R, 4) and e < x(Rn) such
that |le|, < p. Now, compute b € R, 4 via

b= —(as+e) mod (®(x),q)

The secret key is sk = s € R, 3. The public key is pk = (a, b) € R .
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BFV Public Key Encryption

Consider a message mg € R, + for some t € ZT. We then encrypt the
message using pk, a constant D = |g/t| € Z™", and a chosen parameter
p € 77" as follows:

@ Generate a random v € R, 3.

@ Sample e, &) <+ x(Rp) such that |l&j|| ., llef ]l < p-

© Compute ag € Ry g with ag = au+ ¢y mod (®(x),q) and by € Ry 4
with by = bu + Dmg + €] mod (P(x), q).

© Return ctg = (ao, bo).

The ordered pair ctg = (ag, by) € R,%q is our BFV ciphertext.
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Notice that

b + aps = asu — asu + Dmg + eu + ejs + e mod ($(x), q)
Dmy + e mod ($(x), q)

for eg = eu + ej + ej. Or equivalently,
bo = —aps + Dmg + g mod (®(x), q)

The ciphertext ctg = (ag, bo) € R,f’q is essentially an RLWE sample!
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BFV Decryption

If we possess the secret key sk = s, can we retrieve the message? The
following gives the decryption algorithm.

bg+aps mod (¢(x),q)~‘.

© Compute mp = | D

@ Return my.

Is this actually our mg? Note that a BFV ciphertext has the relationship
bo + aos = Dmg + eg mod (®(x), q), so

{bo%—aos mDod (d>(x),q)w _ L’”‘“LEW — o + PW

As long as ||ep]|, < D/2, we are good!
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BGV Public Key Generation

Now for the BGV scheme.

Choose a secret s € R, g with coefficients in {—1,0,1}. The secret key is
sk = s € R, 3. Sample a uniform random a <~ U(R;, ) and a random
error polynomial e < x(Rn) such that [le]| ., < p. In BGV, we define the
public key pk = (a, b) € R2 , where

b= —(as+te) mod (P(x),q) (1)
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BGV Publc Key Encryption

Consider a message mg € R, + for some t € 77" . We then encrypt the
message using pk and a chosen parameter p € Z* as follows:

© Generate a random u € R, 3.

@ Sample e, ef < x(Rn) such that |l&j|| ., llef ]l < p-

© Compute ap € Ry g with a9 = au + te) mod (P(x), q) and by € Ry q
with by = bu + mg + tey mod ((x), q).

Q@ Return ctg = (ao, bo).

The ordered pair cto = (ao, bo) € R2 , is our BGV ciphertext.
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Observe that

bo + ags = bu + mg + tej + (au + teg)s mod (®(x), q)
—(as + te)u + mo + tej + (au + teg)s mod ((x), q)
mo + t(ej + ejs — eu) mod (P(x), q)

Let eg = ej + €)s — eu. Then, we simply have

bo + aps = mo + teg mod (P(x), q) (2)
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BGV Decryption

Decryption is given by the following

@ Compute mg = (bp + aps mod (P(x),q)) mod t.
@ Return my.

Again, is this actually mg?

(bo + aps mod (®(x),q)) mod t = (teg + my mod ($(x),q)) mod t
=tey+mg modt

=mp modt

As long as teg + mg € Ry q, this works! We require ||teg + mgl|, < q/2,
or |leo||, < q/2t (approximately).
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The differences in the homomorphic encryption schemes mostly lies in the
relationship of ag and by.

BFV : by + ags = Dmg + ey mod (P(x), q)
BGV : by + ags = mg + teg  mod (®(x), q)
CKKS: by+aps=mo+ e mod (P(x),q)
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BGV Addition

Given two BGV ciphertexts ctg = (ao, bo) and ct; = (a1, b1), recall they
satisfy

bo + aps = mo + teg  mod (P(x), q) (3)
b1 4+ ais = my + te; mod (P(x), q) (4)

Then, addition can be done via

@ Compute cty = ctg+ ct; mod g.
@ Return ct».

There are two questions we should be thinking about: Does this actually
work? What happens to the error?
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Does it work? Let r be the integer such that mg + my = [mo + m1]¢ + tr.
Now, notice that

ctp =cty+cty mod g = (ap+ a1, bp+ b1) mod g

Then,

(bo+ b1) 4+ (a0 + a1)s = mo + my + t(ep + e1) mod (P(x), q)
= [mo + ml]t + t(eo + el) + tr mod (q)(X), q)
= [mo + m]¢ + teaqs  mod (P(x), q)

What happens to the error? We have that ||r| < 1, so

eaddlloe = lleo +e1 + 1l <lleoll + llerlle +1

Kyle Yates (Clemson) Introduction to Homomorphic Encryption June 23, 2022 21 /44



BFV Addition

BFV addition is very similar to BGV. Take two BFV ciphertexts, (ao, bo)
and (a1, b1) € R3 , where

bo + agps = Dmg + ¢g  mod (®(x), q)
bi +ais = Dmy +e mod (P(x),q)

Let r € R, 4 such that mg + my = [mo + my]; + tr and e = g/t — D. We
have that

(bo + aos) + (b1 + a1s) = D(mg+my) + e +e mod g
= D[mg + m]: + eg + e1 + Dtr mod g
= D[mg + mi]: + eg + e1 — etr mod g
= D[mg + mi]t + €aq4 mod g
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BGV Multiplication

Multiplication is a little bit more involved. We'll start with BGV again.

Given two BGV ciphertexts ctg = (ao, bo) and ct; = (a1, b1), recall they
satisfy

bo 4+ aps = mo + teg  mod (P(x), q) (5)
by 4+ a1s = my + te;  mod (P(x), q) (6)
Step 1. Compute the following:
@ ¢y = bpby mod (P(x), q)
@ ¢ = biag + bpa; mod (P(x), q)
@ ¢, =apa; mod (P(x),q)

... but why?
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Let r,, € Rp g such that momy = [momy]¢ + tr, mod ®(x). Now, we have

b+ cis + chs® = boby + (brao + boar)s + agars>  mod ((x), q)

= (bo + ags)(b1 + a1s) mod (P(x),q)

(mo + tep)(m1 + ter) mod (P(x), q)

momy + t(mger + myeg + teger) mod (P(x), q)
[mom1]: + t(mgoer + mieg + teper + rm) mod (P(x), q)
= [mom]: + te* mod (P(x), q)

We like most of this. cj, ¢f, ¢j can all be computed only with ag, a1, bo, b1.
And, using the secret key s, we can retrieve a multiplication of messages
momy.

What do we not like? The s term! :'(
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Relinearization

We want to compute polynomials dp, d1 € R, 4 such that dy + dis is
approximately c5s? modulo (®(x),q). Or,

do + dis = cbs® + te”  mod (P(x), q) (7)
for some small error " € R,. If we do this, then we will have
ch+cis+ chs? = (ch + do) + (i + di)s + te”  mod (®(x), q)
and therefore

(co+ do) + (cf + di)s = [mom]: + t(e* — €”) mod (P(x), q)
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For any B € Z™, with the smallest v € Z such that BY > g, we write

Jj=0

where h; € Ry 4 such that || h;]| _ < B/2. Let h be the 1 x 7 vector

h=(ho, h,...,h 1)

and g be the v x 1 vector

g=(1,B,82...,871)"
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=1 .
Then, c5s? = (hg)s? = (> h;B/)s?. Let u a y x 1 vector where each
=0

entry is drawn uniform rajndomly from R, . Sample a random v x 1 vector
w, where each entry of w is in R, and bounded by p. Let v be the v x 1
vector

V= s2g —us+tw

where each entry is computed modulo ($®(x), g). We call the vector pair
(u, v) the evaluation key, which we denote evkg,: = (u,v).

Notice that for the jth coordinate in the vector pair (u,v), we have the
relationship
v+ ujs = s°B + tw;  mod (9(x), q)

As the equation above is a simple RLWE encryption of s?B/, we can
publish the evaluation key without compromising security of the secret key
s.
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Notice,

=D hi(v + ujs — twj)

Then, we have

mod (®(x), q)

v—1 v—1 v—1
chs? + tz hjw; = Z hjv; + (Z hjuj)s mod (®(x), q)
j=0 j=0 j=0

= hv + (hu)s

mod (P(x), q)

Or equivalently, ¢}s? + thw = dy + d1s mod (P(x), q).
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Finally... we have that
(ch + hv) + (ci + hu)s = [momi]; + temue  mod (®(x), q)

where enuir = €* — hw. This is our final result from multiplication. Better
yet, everything on the left hand side we can compute with public
information.

We also know bounds for the error term on the right.
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BFV Multiplication

BFV multiplication is even more of a nightmare. Now, we are working
with ciphertexts such that

bo + aps = Dmo + &g mod (®(x), q)
b1 +ais=Dmi; +e mod ((D(X), q)

The issue is now, if we try and multiply these together, we get
(bo + aps)(b1 + ais) = (Dmg + eg)(Dmy + e1) mod (®(x), q)

= D?’mgmy + Dmger + Dmyeg + eper mod (®(x),q)

Loosely speaking, we have something of the form D?mgm;y, when we need
to have Dmgm;.
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How do we deal with this? The idea is we convert our relationships to
integer equations, and then divide by (approximately) D and round our
entries to integers. First, we write

(bo + aos)(b1 + a1s) = (Dmo + ey + qro) (Dmy + e1 + gr1)  mod d(x)

for some ry, n € R,. Then, we multiply everything by t/q.
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The algebra to do this is not nice :'(

(t/q)(co + c15 + c25?)

(tD?/q)[momi]: + (tD?/q)2trm + (tD/q)(moer + myep)
(ta/q)(eor1 + roer) + (t/q)[eoer]p + (tD/q)re
(tqD/q)(mors + rom1) + (tq°/q)rors mod ®(x)

+ 4+

(q = re(q))D/q)[momi]e + ((q — re(q))D/q)2tr,

(9 —re(q))/a)(moer + mieo) + (t)(eors + roer)

t/q)lecer]p + ((q — re(q))/q)re + (g — re(q))(mor + rom1)
tq2/q)r0r1 mod ®(x)

+ + 4+

Kyle Yates (Clemson) Introduction to Homomorphic Encryption June 23, 2022 32 /44



Believe it or not, this does clean up pretty nicely. The final result is

b+ cjs + chs? = D[momi]: + e*  mod (®(x), q)

where ¢ = |tcy/q], ¢ = |tci/q], and ¢} = |tcz/q] and the error term is

e* = (moer+miep)+t(eorn+roer)+re+(—re(q))(rm+mori+romy)+r—r,

From here, we can do a similar type of relinearization process.

Kyle Yates (Clemson) Introduction to Homomorphic Encryption June 23, 2022 33 /44



Error Control

Recall that to decrypt a ciphertext, we need to have error < D/2. When
we do operations on ciphertexts, the error grows. How do we manage the
ciphertext error?

We will introduce the technique known as modulus reduction in order to
do this.

Let g < Q integers. Given an integer modulus @ in the ciphertext, we will

reduce the ciphertext to a modulus g ciphertext while also reducing the
error.
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For the following, let Dg = |Q/t] and Dg = |q/t|.

Input: Q € Z" an integer, g € Z" an integer, and cto = (a0, bo) € R2
BFV ciphertext such that by + ags = Domo + ep mod (®(x), Q).

O Compute ay = [ %32] and by = L%OT
@ Return ctq = (ap, by) € R3, such that by + aps = Dg + emr

mod (P(x), q) for some evr.

We have the same two questions as before: Does this actually work?
What happens to the error?
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Let e = Q/t — Dq, €¢q = q/t — Dq, €5, = qao/Q — ap, and

€y, = qbo/ Q@ — b). By assumption, we first note that (ap, bg) € R, q is a

BFV ciphertext. That is,
bo = —aps + Dgmo + eg mod (P(x), Q)

Therefore, there is some integer rg € Z such that
bo + aps = Dgomo + eg + Qrg mod ®(x). Then,

gb
b(,):?() Ebo
qgaos  qDq qeo
= ——+ —"mg+ — — €p, +gr, mod P(x
0 g Mt g Twmtag (x)

Note that as Do = Q/t — €@, we have that gDg/Q = q/t — qeq/ Q.

Since g/t = Dq + €4, we have gDg/Q = Dq + € — qeq/ Q.
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Therefore,

aos D €
by = _qTO + qTQmo + LQO —€p, + qro  mod P(x)
€ e
= —ayS + €2, + Dgmo + (eq — %)mo + % — €py + qrg  mod P(x)

= —ays + Dgmo + evr  mod (®(x), q)

where ge
0
eMR = 0 + (€q — qeq/ Q)Mo — €py + €205

Therefore, by + aps = Dgmo + emr mod (P(x), q).
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What about the error?

Since Q > g, then we have that 0 < g/Q < 1. Noting that as
Q/t =Dg+e€q and Q/t > Dg, then 0 < eg < 1. Similarly, 0 < ¢eq < 1.
Then |eg — qeq/Q| < 1. So,

g€
el < || %2 + (cq ~ ac0/ Qo — ey + s

<4

o0
t
leolloe + leg — qe/ QI3 + lle oo + llearsllo

9, t+1  Orlls|
<1E o0
<gEt—o+—

—O
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Modulus Leveling

Let gs+1 > q¢ > -+ > qo be distinct primes, and define Qp, ..., Q41 as

i
Qi = H qj
j=0

We call Q; the modulus at level /. It is easy to see that Q;/Q;—1 = g; for
any i € {1,...,£+ 1}. The idea is that we will periodically reduce the
modulus from Q; to Q;_1 to reduce the error.
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We know that performing modulus reduction produces a ciphertext with

eMR such that

Qi-1
HeMRHOO < ! E+ +

t+1  Orllslly

Qi 2 2
1 t1 ol
— ~F o0
a2 T2

or equivalently,
2E

;>
"7 2|lemrlloe —t —1—6r|Is]l,

q

If we choose some constant C > |levr||, in the equation above to replace
llemr|| o, then we can guarantee that modulus reduction will always return
an error bounded by C so long as this bound on g; above is met.
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Techniques in Efficiency (Thesis)

-Chinese Remainder Theorem. Break down @ into individual coprime
pieces and do operations component-wise. Tricky part here is doing
computations that we did in Q or R.

-Fast Fourier Transforms for the actual polynomial-polynomial
multiplication

-Improving error bounds to allow for more computations.
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