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Cryptography

Suppose there are two people, Alice and Bob. Alice wants to send Bob a
message over an insecure channel, but wants only Bob to read the
message she sends.

If Alice just sends the message plainly over an insecure channel, then a
third party can intercept the transmission and read the message! How can
Alice send Bob this message without anybody else reading it?
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Cryptography

Instead of sending the message plainly, Alice is going to encrypt the
message using some information called a key, and then send the message
to Bob.

When Bob receives the message, he will decrypt the information with a
secret key, and can then read the message. However, if a third party
without the secret key intercepts the message, they can not decrypt and
read the message.

When Alice and Bob share the same secret key, we call this symmetric
key cryptography. When the key Alice uses is different from Bob and is
public information, we call this public key cryptography.
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Cryptography (More Formally)

Let Enc : K1 ×M×R→ C. For any m ∈M and k ∈ K1, one picks a
random r ∈ R and computes ct = Enc(m, k, r) ∈ C. We call Enc an
encryption function or encryption algorithm, m the message (or
plaintext), k the key, and ct the ciphertext. When |R| = 1, we call this
deterministic encryption. When |R| > 1, we call this probabilistic
encryption.

Let Dec : C × K2 →M. For inputs ct ∈ C, sk ∈ K2, and corresponding
output m ∈M, we write Dec(ct, sk) = m. We cal Dec a decryption
function or decryption algorithm. Our goal is to have the following
property.

Dec(Enc(m, k, r), sk) = m
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Homomorphic Encryption

The goal of homomorphic encryption is to obtain a homomorphism in
the message slot in the encryption function.

For two messages m0 and m1 inM, a public or private key k ∈ K, and
random r0, r1 ∈ R we have that for some r2, r3 ∈ R,

Enc(m0, k, r0) + Enc(m1, k, r1) = Enc(m0 +m1, k, r2)

Enc(m0, k, r0)Enc(m1, k, r1) = Enc(m0m1, k, r3)

This property allows one to perform computations on encrypted data
without needing to first decrypt it. Current homomorphic encryption
schemes are largely based on error correction.
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Notation

Define Zq as the ring of centered representatives as
Zq := Z ∩ (−q/2, q/2]. When given an integer x , we denote [x ]q as the
reduction of x into the interval Zq such that q divides [x ]q − x . When x is
a polynomial or vector, [x ]q means applying [·]q to each coefficient.

We define Rn as the ring

Rn := Z[x ]/(Φ(x))

where Φ(x) is an mth cyclotomic polynomial of degree n, a power of two.
Namely, Φ(x) = xn + 1. Similar to Rn, we define Rn,q as the ring

Rn,q := Zq[x ]/(Φ(x))
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Notation

For any c ∈ R, the infinity norm of c is defined as ∥c∥∞ = |c |. For any
polynomial f (x) =

∑k
i=0 aix

i with ai ∈ R, the infinity norm of f (x) is
defined as

∥f (x)∥∞ = max{|a1|, . . . , |ak |}

therefore using centered representatives, for any f (x) ∈ Rn,q we have
∥f (x)∥∞ ≤ q/2.

The symbols ⌊·⌋ and ⌈·⌉ will denote floor and ceiling respectively, whereas
⌊·⌉ will denote rounding to the nearest integer.

For a set S and a given probability distribution χ, we let χ(S) denote that
distribution on S . We will denote U(S) as a uniform distribution on S .
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Learning With Errors (LWE)

Homomorphic encryption is based off the learning with errors (LWE)
problem.

Choose s ∈ Zn
q secret. Sample e ← χ(Z) from some desired distribution

such that |e| ≤ ρ, where ρ is a small parameter. Then, we sample a
uniform random a← U(Zn

q) and calculate b via

b = ⟨a, s⟩+ e mod q

We call (a, b) an LWE sample.

LWE Problem: Given many LWE samples, find s.

The LWE problem is at least as hard as many worst-case hard lattice
problems.
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Ring Learning With Errors (RLWE)

We can define an analogous problem with rings known as the ring
learning with errors (RLWE) problem.

Choose secret s ∈ Rn,q and sample an error e ← χ(Rn) such that
∥e∥∞ ≤ ρ. Sample a← U(Rn,q) and compute b ∈ Rn,q via

b ≡ as + e mod (Φ(x), q)

The ordered pair (a, b) ∈ R2
n,q is called an RLWE sample. The RLWE

problem can be defined in the same way as the LWE problem.

The security of cryptosystems we will use rely on the hardness of RLWE.
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Basic Homomorphic Encryption

Three main schemes: BFV and BGV (exact), and CKKS (approximate).
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BFV Public Key Generation

First the BFV scheme.

Choose s ∈ Rn,3 secret. Sample random a← U(Rn,q) and e ← χ(Rn) such
that ∥e∥∞ ≤ ρ. Now, compute b ∈ Rn,q via

b = −(as + e) mod (Φ(x), q)

The secret key is sk = s ∈ Rn,3. The public key is pk = (a, b) ∈ R2
n,q.
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BFV Public Key Encryption

Consider a message m0 ∈ Rn,t for some t ∈ Z+. We then encrypt the
message using pk, a constant D = ⌊q/t⌋ ∈ Z+, and a chosen parameter
ρ ∈ Z+ as follows:

1 Generate a random u ∈ Rn,3.

2 Sample e ′0, e
′′
0 ← χ(Rn) such that ∥e ′0∥∞ , ∥e ′′0∥∞ ≤ ρ.

3 Compute a0 ∈ Rn,q with a0 ≡ au + e ′0 mod (Φ(x), q) and b0 ∈ Rn,q

with b0 ≡ bu + Dm0 + e ′′0 mod (Φ(x), q).

4 Return ct0 = (a0, b0).

The ordered pair ct0 = (a0, b0) ∈ R2
n,q is our BFV ciphertext.
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Notice that

b0 + a0s ≡ asu − asu + Dm0 + eu + e ′0s + e ′′0 mod (Φ(x), q)

≡ Dm0 + e0 mod (Φ(x), q)

for e0 = eu + e ′0 + e ′′0 . Or equivalently,

b0 ≡ −a0s + Dm0 + e0 mod (Φ(x), q)

The ciphertext ct0 = (a0, b0) ∈ R2
n,q is essentially an RLWE sample!
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BFV Decryption

If we possess the secret key sk = s, can we retrieve the message? The
following gives the decryption algorithm.

1 Compute m0 = ⌊b0+a0s mod (Φ(x),q)
D ⌉.

2 Return m0.

Is this actually our m0? Note that a BFV ciphertext has the relationship
b0 + a0s ≡ Dm0 + e0 mod (Φ(x), q), so⌊

b0 + a0s mod (Φ(x), q)

D

⌉
=

⌊
m0 +

e0
D

⌉
= m0 +

⌊e0
D

⌉
As long as ∥e0∥∞ ≤ D/2, we are good!
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BGV Public Key Generation

Now for the BGV scheme.

Choose a secret s ∈ Rn,q with coefficients in {−1, 0, 1}. The secret key is
sk = s ∈ Rn,3. Sample a uniform random a← U(Rn,q) and a random
error polynomial e ← χ(Rn) such that ∥e∥∞ ≤ ρ. In BGV, we define the
public key pk = (a, b) ∈ R2

n,q where

b ≡ −(as + te) mod (Φ(x), q) (1)
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BGV Publc Key Encryption

Consider a message m0 ∈ Rn,t for some t ∈ Z+. We then encrypt the
message using pk and a chosen parameter ρ ∈ Z+ as follows:

1 Generate a random u ∈ Rn,3.

2 Sample e ′0, e
′′
0 ← χ(Rn) such that ∥e ′0∥∞ , ∥e ′′0∥∞ ≤ ρ.

3 Compute a0 ∈ Rn,q with a0 ≡ au + te ′0 mod (Φ(x), q) and b0 ∈ Rn,q

with b0 ≡ bu +m0 + te ′′0 mod (Φ(x), q).

4 Return ct0 = (a0, b0).

The ordered pair ct0 = (a0, b0) ∈ R2
n,q is our BGV ciphertext.
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Observe that

b0 + a0s ≡ bu +m0 + te ′′0 + (au + te ′0)s mod (Φ(x), q)

≡ −(as + te)u +m0 + te ′′0 + (au + te ′0)s mod (Φ(x), q)

≡ m0 + t(e ′′0 + e ′0s − eu) mod (Φ(x), q)

Let e0 = e ′′0 + e ′0s − eu. Then, we simply have

b0 + a0s ≡ m0 + te0 mod (Φ(x), q) (2)
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BGV Decryption

Decryption is given by the following

1 Compute m0 = (b0 + a0s mod (Φ(x), q)) mod t.

2 Return m0.

Again, is this actually m0?

(b0 + a0s mod (Φ(x), q)) mod t ≡ (te0 +m0 mod (Φ(x), q)) mod t

≡ te0 +m0 mod t

≡ m0 mod t

As long as te0 +m0 ∈ Rn,q, this works! We require ∥te0 +m0∥∞ ≤ q/2,
or ∥e0∥∞ ≤ q/2t (approximately).
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The differences in the homomorphic encryption schemes mostly lies in the
relationship of a0 and b0.

BFV : b0 + a0s ≡ Dm0 + e0 mod (Φ(x), q)

BGV : b0 + a0s ≡ m0 + te0 mod (Φ(x), q)

CKKS : b0 + a0s ≡ m0 + e0 mod (Φ(x), q)
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BGV Addition

Given two BGV ciphertexts ct0 = (a0, b0) and ct1 = (a1, b1), recall they
satisfy

b0 + a0s ≡ m0 + te0 mod (Φ(x), q) (3)

b1 + a1s ≡ m1 + te1 mod (Φ(x), q) (4)

Then, addition can be done via

1 Compute ct2 = ct0 + ct1 mod q.

2 Return ct2.

There are two questions we should be thinking about: Does this actually
work? What happens to the error?
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Does it work? Let r be the integer such that m0 +m1 = [m0 +m1]t + tr .
Now, notice that

ct2 = ct1 + ct2 mod q = (a0 + a1, b0 + b1) mod q

Then,

(b0 + b1) + (a0 + a1)s ≡ m0 +m1 + t(e0 + e1) mod (Φ(x), q)

≡ [m0 +m1]t + t(e0 + e1) + tr mod (Φ(x), q)

≡ [m0 +m1]t + teadd mod (Φ(x), q)

What happens to the error? We have that ∥r∥∞ ≤ 1, so

∥eadd∥∞ = ∥e0 + e1 + r∥∞ ≤ ∥e0∥∞ + ∥e1∥∞ + 1

Kyle Yates (Clemson) Introduction to Homomorphic Encryption June 23, 2022 21 / 44



BFV Addition

BFV addition is very similar to BGV. Take two BFV ciphertexts, (a0, b0)
and (a1, b1) ∈ R2

n,q where

b0 + a0s ≡ Dm0 + e0 mod (Φ(x), q)

b1 + a1s ≡ Dm1 + e1 mod (Φ(x), q)

Let r ∈ Rn,q such that m0 +m1 = [m0 +m1]t + tr and ϵ = q/t − D. We
have that

(b0 + a0s) + (b1 + a1s) ≡ D(m0 +m1) + e0 + e1 mod q

≡ D[m0 +m1]t + e0 + e1 + Dtr mod q

≡ D[m0 +m1]t + e0 + e1 − ϵtr mod q

≡ D[m0 +m1]t + eadd mod q
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BGV Multiplication

Multiplication is a little bit more involved. We’ll start with BGV again.

Given two BGV ciphertexts ct0 = (a0, b0) and ct1 = (a1, b1), recall they
satisfy

b0 + a0s ≡ m0 + te0 mod (Φ(x), q) (5)

b1 + a1s ≡ m1 + te1 mod (Φ(x), q) (6)

Step 1. Compute the following:

1 c ′0 = b0b1 mod (Φ(x), q)

2 c ′1 = b1a0 + b0a1 mod (Φ(x), q)

3 c ′2 = a0a1 mod (Φ(x), q)

... but why?
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Let rm ∈ Rn,q such that m0m1 ≡ [m0m1]t + trm mod Φ(x). Now, we have

c ′0 + c ′1s + c ′2s
2 ≡ b0b1 + (b1a0 + b0a1)s + a0a1s

2 mod (Φ(x), q)

≡ (b0 + a0s)(b1 + a1s) mod (Φ(x), q)

≡ (m0 + te0)(m1 + te1) mod (Φ(x), q)

≡ m0m1 + t(m0e1 +m1e0 + te0e1) mod (Φ(x), q)

≡ [m0m1]t + t(m0e1 +m1e0 + te0e1 + rm) mod (Φ(x), q)

≡ [m0m1]t + te∗ mod (Φ(x), q)

We like most of this. c ′0, c
′
1, c

′
2 can all be computed only with a0, a1, b0, b1.

And, using the secret key s, we can retrieve a multiplication of messages
m0m1.

What do we not like? The s2 term! :’(
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Relinearization

We want to compute polynomials d0, d1 ∈ Rn,q such that d0 + d1s is
approximately c ′2s

2 modulo (Φ(x), q). Or,

d0 + d1s ≡ c ′2s
2 + te ′′ mod (Φ(x), q) (7)

for some small error e ′′ ∈ Rn. If we do this, then we will have

c ′0 + c ′1s + c ′2s
2 ≡ (c ′0 + d0) + (c ′1 + d1)s + te ′′ mod (Φ(x), q)

and therefore

(c ′0 + d0) + (c ′1 + d1)s ≡ [m0m1]t + t(e∗ − e ′′) mod (Φ(x), q)
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For any B ∈ Z+, with the smallest γ ∈ Z such that Bγ > q, we write

c ′2 =

γ−1∑
j=0

hjB
j

where hj ∈ Rn,q such that ∥hj∥∞ ≤ B/2. Let h be the 1× γ vector

h =
(
h0, h1, . . . , hγ−1

)
and g be the γ × 1 vector

g =
(
1,B,B2, . . . ,Bγ−1

)T
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Then, c ′2s
2 = (hg)s2 = (

γ−1∑
j=0

hjB
j)s2. Let u a γ × 1 vector where each

entry is drawn uniform randomly from Rn,q. Sample a random γ × 1 vector
w, where each entry of w is in Rn and bounded by ρ. Let v be the γ × 1
vector

v = s2g− us + tw

where each entry is computed modulo (Φ(x), q). We call the vector pair
(u, v) the evaluation key, which we denote evkflat = (u, v).

Notice that for the jth coordinate in the vector pair (u, v), we have the
relationship

vj + ujs = s2B j + twj mod (Φ(x), q)

As the equation above is a simple RLWE encryption of s2B j , we can
publish the evaluation key without compromising security of the secret key
s.

Kyle Yates (Clemson) Introduction to Homomorphic Encryption June 23, 2022 27 / 44



Notice,

c ′2s
2 = (hg)s2

=
( γ−1∑

j=0

hjB
j
)
s2

≡
γ−1∑
j=0

hj(vj + ujs − twj) mod (Φ(x), q)

Then, we have

c ′2s
2 + t

γ−1∑
j=0

hjwj ≡
γ−1∑
j=0

hjvj +
( γ−1∑

j=0

hjuj

)
s mod (Φ(x), q)

≡ hv+ (hu)s mod (Φ(x), q)

Or equivalently, c ′2s
2 + thw ≡ d0 + d1s mod (Φ(x), q).
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Finally... we have that

(c ′0 + hv) + (c ′1 + hu)s ≡ [m0m1]t + temult mod (Φ(x), q)

where emult = e∗ − hw. This is our final result from multiplication. Better
yet, everything on the left hand side we can compute with public
information.

We also know bounds for the error term on the right.
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BFV Multiplication

BFV multiplication is even more of a nightmare. Now, we are working
with ciphertexts such that

b0 + a0s ≡ Dm0 + e0 mod (Φ(x), q)

b1 + a1s ≡ Dm1 + e1 mod (Φ(x), q)

The issue is now, if we try and multiply these together, we get

(b0 + a0s)(b1 + a1s) ≡ (Dm0 + e0)(Dm1 + e1) mod (Φ(x), q)

≡ D2m0m1 + Dm0e1 + Dm1e0 + e0e1 mod (Φ(x), q)

Loosely speaking, we have something of the form D2m0m1, when we need
to have Dm0m1.
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How do we deal with this? The idea is we convert our relationships to
integer equations, and then divide by (approximately) D and round our
entries to integers. First, we write

(b0 + a0s)(b1 + a1s) ≡ (Dm0 + e0 + qr0) (Dm1 + e1 + qr1) mod Φ(x)

for some r0, r1 ∈ Rn. Then, we multiply everything by t/q.
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The algebra to do this is not nice :’(

(t/q)(c0 + c1s + c2s
2)

≡ (tD2/q)[m0m1]t + (tD2/q)2trm + (tD/q)(m0e1 +m1e0)

+ (tq/q)(e0r1 + r0e1) + (t/q)[e0e1]D + (tD/q)re

+ (tqD/q)(m0r1 + r0m1) + (tq2/q)r0r1 mod Φ(x)

≡ ((q − rt(q))D/q)[m0m1]t + ((q − rt(q))D/q)2trm

+ ((q − rt(q))/q)(m0e1 +m1e0) + (t)(e0r1 + r0e1)

+ (t/q)[e0e1]D + ((q − rt(q))/q)re + (q − rt(q))(m0r1 + r0m1)

+ (tq2/q)r0r1 mod Φ(x)
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Believe it or not, this does clean up pretty nicely. The final result is

c ′0 + c ′1s + c ′2s
2 ≡ D[m0m1]t + e∗ mod (Φ(x), q)

where c ′0 = ⌊tc0/q⌉, c ′1 = ⌊tc1/q⌉, and c ′2 = ⌊tc2/q⌉ and the error term is

e∗ = (m0e1+m1e0)+t(e0r1+r0e1)+re+(−rt(q))(rm+m0r1+r0m1)+rr−ra

From here, we can do a similar type of relinearization process.
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Error Control

Recall that to decrypt a ciphertext, we need to have error < D/2. When
we do operations on ciphertexts, the error grows. How do we manage the
ciphertext error?

We will introduce the technique known as modulus reduction in order to
do this.

Let q < Q integers. Given an integer modulus Q in the ciphertext, we will
reduce the ciphertext to a modulus q ciphertext while also reducing the
error.
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For the following, let DQ = ⌊Q/t⌋ and Dq = ⌊q/t⌋.

Input: Q ∈ Z+ an integer, q ∈ Z+ an integer, and ct0 = (a0, b0) ∈ R2
n,Q

BFV ciphertext such that b0 + a0s ≡ DQm0 + e0 mod (Φ(x),Q).

1 Compute a′0 = ⌊
qa0
Q ⌉ and b′0 = ⌊

qb0
Q ⌉.

2 Return ct′0 = (a′0, b
′
0) ∈ R2

n,q such that b′0 + a′0s ≡ Dq + eMR

mod (Φ(x), q) for some eMR.

We have the same two questions as before: Does this actually work?
What happens to the error?
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Let ϵQ = Q/t − DQ , ϵq = q/t − Dq, ϵa0 = qa0/Q − a′0, and
ϵb0 = qb0/Q − b′0. By assumption, we first note that (a0, b0) ∈ Rn,Q is a
BFV ciphertext. That is,

b0 ≡ −a0s + DQm0 + e0 mod (Φ(x),Q)

Therefore, there is some integer rQ ∈ Z such that
b0 + a0s ≡ DQm0 + e0 + QrQ mod Φ(x). Then,

b′0 =
qb0
Q
− ϵb0

≡ −qa0s

Q
+

qDQ

Q
m0 +

qe0
Q
− ϵb0 + qrQ mod Φ(x)

Note that as DQ = Q/t − ϵQ , we have that qDQ/Q = q/t − qϵQ/Q.
Since q/t = Dq + ϵq, we have qDQ/Q = Dq + ϵq − qϵQ/Q.
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Therefore,

b′0 ≡ −
qa0s

Q
+

qDQ

Q
m0 +

qe0
Q
− ϵb0 + qrQ mod Φ(x)

≡ −a′0s + ϵa0s + Dqm0 + (ϵq −
qϵQ
Q

)m0 +
qe0
Q
− ϵb0 + qrQ mod Φ(x)

≡ −a′0s + Dqm0 + eMR mod (Φ(x), q)

where
eMR =

qe0
Q

+ (ϵq − qϵQ/Q)m0 − ϵb0 + ϵa0s

Therefore, b′0 + a′0s ≡ Dqm0 + eMR mod (Φ(x), q).

Kyle Yates (Clemson) Introduction to Homomorphic Encryption June 23, 2022 37 / 44



What about the error?

Since Q > q, then we have that 0 < q/Q < 1. Noting that as
Q/t = DQ + ϵQ and Q/t ≥ DQ , then 0 ≤ ϵQ ≤ 1. Similarly, 0 ≤ ϵq ≤ 1.
Then |ϵq − qϵQ/Q| ≤ 1. So,

∥eMR∥∞ ≤
∥∥∥∥qe0Q + (ϵq − qϵQ/Q)m0 − ϵb0 + ϵa0s

∥∥∥∥
∞

≤ q

Q
∥e0∥∞ + |ϵq − qϵQ/Q|

t

2
+ ∥ϵb0∥∞ + ∥ϵa0s∥∞

≤ q

Q
E +

t + 1

2
+

δR ∥s∥∞
2
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Modulus Leveling

Let qℓ+1 > qℓ > · · · > q0 be distinct primes, and define Q0, . . . ,Qℓ+1 as

Qi =
i∏

j=0

qj

We call Qi the modulus at level i . It is easy to see that Qi/Qi−1 = qi for
any i ∈ {1, . . . , ℓ+ 1}. The idea is that we will periodically reduce the
modulus from Qi to Qi−1 to reduce the error.
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We know that performing modulus reduction produces a ciphertext with
eMR such that

∥eMR∥∞ <
Qi−1

Qi
E +

t + 1

2
+

δR ∥s∥∞
2

=
1

qi
E +

t + 1

2
+

δR ∥s∥∞
2

or equivalently,

qi >
2E

2 ∥eMR∥∞ − t − 1− δR ∥s∥∞

If we choose some constant C > ∥eMR∥∞ in the equation above to replace
∥eMR∥∞, then we can guarantee that modulus reduction will always return
an error bounded by C so long as this bound on qi above is met.
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Techniques in Efficiency (Thesis)

-Chinese Remainder Theorem. Break down Q into individual coprime
pieces and do operations component-wise. Tricky part here is doing
computations that we did in Q or R.

-Fast Fourier Transforms for the actual polynomial-polynomial
multiplication

-Improving error bounds to allow for more computations.
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