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Overview

This presentation is based on a recent paper. A preprint of our manuscript
is available from https://eprint.iacr.org/2024/991.

Our goals in this paper:

1 Provide the theoretical mathematical foundations necessary for
leveled versions of the schemes outlined in the Homomorphic
Encryption Standard (Albrecht et al., 2019 [1]).

2 Propose various theoretical improvements in leveled schemes
1 Worst-case noise bounds and noise management
2 Parameter conditions for computation budgeting based on noise

expansion
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What is Homomorphic Encryption?

Homomorphic encryption allows for addition and multiplication to be
performed on ciphertexts without needing to decrypt or possess any
knowledge of private information.

Furthermore, ciphertext computations result in the same output as the
corresponding message computations. That is, for messages m0,m1 and
encryption key k,

Enc(m0, k) + Enc(m1, k) = Enc(m0 +m1, k)
Enc(m0, k) × Enc(m1, k) = Enc(m0 ·m1, k)
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Types of Schemes

We discuss leveled homomorphic encryption schemes which are based on
the Ring Learning With Errors (RLWE) problems.

Leveled homomorphic encryption schemes are schemes which allow for
circuits evaluations of a predetermined (multiplicative) depth.

This differs from fully homomorphic encryption schemes, which allow for
evaluation of circuit of arbitrary depth. This can be expensive in practice
(especially bootstrapping).
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Types of Schemes

Three popular styles of leveled schemes:

1 Brakerski-Fan-Vercauteren (BFV)

2 Brakerski-Gentry-Vaikuntanathan (BGV)

3 Cheon-Kim-Kim-Song (CKKS)

Our paper discusses all three of these schemes. For sake of time
constraints, we’ll only focus on BFV [2] in this talk.

Our theoretical improvements are focused on noise management and
computation, rather than implementations and security. However, we do
outline the basics of these in the paper.
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Notation

Define Zq as the ring of centered representatives Zq := Z ∩ (−q/2, q/2].

We define Rn as the ring

Rn := Z[x]/(Φ(x))

where Φ(x) is an mth cyclotomic polynomial of degree n, a power of two.
Namely, Φ(x) = xn + 1.

Rn,q := Zq [x]/(Φ(x))

Define the expansion factor 𝛿R of Rn as 𝛿R = max
{
∥uv ∥∞
∥u ∥∞ ∥v ∥∞ : u, v ∈ Rn

}
.
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Notation

For any polynomial f (x) = ∑k
i=0 aix

i with ai ∈ R, the infinity norm of f (x)
is defined as

∥f (x)∥∞ = max{|a0 |, . . . , |ak |}.

The symbols ⌊·⌋ and ⌈·⌉ will denote floor and ceiling respectively, whereas
⌊·⌉ will denote rounding to the nearest integer.

For a set S , we will denote U (S) as a uniform distribution on S . We
denote 𝜒𝜌 as any probability distribution on Rn, where each coefficient is
random in [−𝜌, 𝜌] and independent.
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A Standard BFV Public Key Encryption Algorithm

Key Generation:

Keygen(q)
Input: q ∈ N.
Output: sk = s ∈ Rn,3 secret key,

pk = (k0, k1) ∈ R2
n,q public key.

Step 1. Choose randomly s ∈ Rn,3.

Step 2. Sample k0 ← U (Rn,q) and e ← 𝜒𝜌.

Compute k1 := [−(k0s + e)]Φ(x ) ,q.
Step 3. Return sk = s and pk = (k0, k1).

Algorithm: BFV Key Generation
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A Standard BFV Public Key Encryption Algorithm

Encryption:

Encrypt(m0,Dq , pk)
Input: m0 ∈ Rn,t message,

Dq = ⌊q/t⌋ ∈ N constant,

pk = (k0, k1) ∈ R2
n,q public key.

Output: ct0 = (a0, b0) ∈ R2
n,q BFV ciphertext.

Step 1. Sample u ← U (Rn,3) and sample e1, e2 ← 𝜒𝜌.

Step 2. Compute (a0, b0) ∈ R2
n,q where

a0 := [k0u + e1]Φ(x ) ,q,
b0 := [k1u + Dqm0 + e2]Φ(x ) ,q.

Step 3. Return ct0 = (a0, b0) ∈ R2
n,q.

Algorithm: BFV Encryption
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Our BFV ciphertext ct0 = (a0, b0) ∈ R2
n,q satisfies the following

relationship:

b0 + a0s ≡ Dqm0 + e0 mod (Φ(x), q)

ciphertext componentsciphertext components
secret key

constant

message

noise/error term

Public: q, t ∈ Z with q ≫ t Private: s ∈ Rn,3

Dq = ⌊q/t⌋ ∈ Z m0 ∈ Rn,t

Φ(x) ∈ Z[x] of degree n e0 ∈ Rn

ct0 = (a0, b0) ∈ R2
n,q
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As homomorphic computation is performed, the noise term expands
(especially with multiplication procedures).

We introduce a standard technique of modulus reduction to reduce
ciphertext noise. This procedure reduces the integer modulus of the
ciphertext space, while simultaneously reducing ciphertext noise.
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Let DQ = ⌊Q/t⌋ and Dq = ⌊q/t⌋, with Q > q.

BFV.Modreduce(Q , q, ct0)
Input: Q ∈ N an integer,

q ∈ N an integer,

ct0 = (a0, b0) ∈ R2
n,Q .

Output: ct′0 = (a′0, b′0) ∈ R2
n,q.

Step 1. Compute a′0 := ⌊
qa0
Q ⌉ and b′0 := ⌊

qb0
Q ⌉.

Step 2. Return ct′0 = (a′0, b′0) ∈ R2
n,q.

Algorithm: BFV Modulus Reduction
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Lemma

Suppose the input of BFV.Modreduce is a BFV ciphertext such that
∥e0∥∞ ≤ E . Let ct′0 be the output of BFV.Modreduce. If t | (Q − 1) and
t | (q − 1), then

b′0 + a′0s ≡ Dqm0 + e′0 mod (Φ(x), q)

and
e′0∞ ≤ q

QE + 1 + 𝛿R ∥s ∥∞
2 . Furthermore, if Q/q > 2E

𝛿R ∥s ∥∞−2 , thene′0∞ < 𝛿R ∥s ∥∞.

Modulus reduction is commonly used to periodically reduce ciphertext
noise. Our lemma ensures noise is reduced within a constant bound given
conditions on Q/q.
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We propose a modified encryption style with a built-in modulus reduction
(before message bits are added) to control fresh ciphertext noise.

Key Generation:

BFV.Keygen(q, p0)
Input: q ∈ N,

p0 ∈ N with p0 ≥ 5𝛿R + 3.
Output: sk = s ∈ Rn,3 secret key,

pk = (k0, k1) ∈ R2
n,p0q public key.

Step 1. Choose randomly s ∈ Rn,3.

Step 2. Sample k0 ← U (Rn,p0q) and e ← 𝜒𝜌.

Compute k1 := [−(k0s + e)]Φ(x ) ,p0q.
Step 3. Return sk = s and pk = (k0, k1).

Algorithm: BFV Key Generation
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Modified Encryption:

BFV.Encrypt(m0,Dq , pk)
Input: m0 ∈ Rn,t message,

Dq ∈ N constant,

pk = (k0, k1) ∈ R2
n,p0q public key.

Output: ct′0 = (a′0, b′0) ∈ R2
n,q BFV ciphertext.

Step 1. Sample u ← U (Rn,3) and sample e1, e2 ← 𝜒𝜌.

Step 2. Compute (a0, b0) ∈ R2
n,p0q where

a0 := [k0u + e1]Φ(x ) ,p0q,
b0 := [k1u + e2]Φ(x ) ,p0q.

Step 3. Compute

(a′0, b∗0) := BFV.Modreduce(p0q, q, (a0, b0)),
b′0 := [b∗0 + Dqm0]q.

Step 4. Return ct′0 = (a′0, b′0) ∈ R2
n,q.

Algorithm: Modified BFV Encryption
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Bounds on Noise

We derive several new bounds on noise expansion for homomorphic
operations. We emphasize that these are worst-case bounds, and are
cleaner (but comparable) to existing bounds.

Note we suppose 𝜌 = 𝛿R ∥s ∥∞ = n, 𝛿R ≥ 16, p0 ≥ 5𝛿R + 3, t | (q − 1) and
t | (Q − 1). Let E be the worst-case noise bound for each inputted
ciphertext in the respective operation.

Operation Noise Bound

Encryption 𝜌

LinearCombo M (E + 1)
Multiply (initial) 3.5Et𝜌2

Multiply (with relinearization) 3.6Et𝜌2

ModReduce (if Q/q > 2E
𝛿R ∥s ∥∞−2) 𝜌

Figure: Noise Bounds. Here, M is the sum of coefficients in absolute value of the
linear combination.
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Computation Budgeting Results

Definition (Depth-1 Multiplication)

Suppose we have a collection of messages. For fixed k1 and k2, we say
that we can perform a depth-1 multiplication if we can perform 2k2 groups
of k1 − 1 additions, followed by one round of k2 multiplications, followed
by k2 − 1 additions.

m1,1 . . . m1,k1 m2,1 . . . m2,k1 . . . m2k2−1,1 . . . m2k2−1,k1 m2k2,1 . . . m2k2,k1

+ + + +

× ×

+

. . .

. . .

. . .

Algorithm: Plaintext Depth-1 Multiplication
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We prove parameter conditions which guarantee a depth-1 homomorphic
multiplication for a leveled integer modulus at level i :

Qi = q0q1 · · · qi .

Furthermore, a following modulus reduction reduces ciphertext noise
within a fixed bound.

Lemma

Suppose qi > 9k1k2tn
2 and 𝛿R ≥ 16. Then, for a collection of BFV

ciphertexts at level i all with noise bounded by 𝜌, we can homomorphically
compute a depth-1 multiplication, followed by a modulus reduction of
Qi/Qi−1 = qi . The result is a BFV ciphertext at level i − 1 with noise
bounded by 𝜌.
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Other Results in Our Paper

We outline various other topics and results in our paper:

Modified encryptions and noise improvements for BGV and CKKS

Depth-1 parameter conditions and lemmas for BGV and CKKS

Theoretical security analysis
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