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The Complexity Zoo

P. The class of P consists of problems that can be solved in polynomial
time.

NP. A problem is called NP if there is a short witness when the answer is
yes; that is, for the yes-instance of the problem, there is a solution which
can be checked in polynomial time.

NP-complete. A problem in NP is called NP-complete if every problem in
NP can be reduced to it in polynomial time.

NP-hard. A problem is called NP-hard if every problem in NP-complete
can be reduced to it in polynomial time.
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The Complexity Zoo (Simplified)

P. Problems that are easy to solve.

NP. Problems that are easy to verify a solution for.

NP-complete. The hardest problems in NP. Solving any NP-complete
problem solves every problem in NP.

NP-hard. Problems that are at least as hard as NP-complete problems
but may not be in NP. Solving any NP-hard problem solves every
NP-complete problem.
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How to Get Rich

Prove or disprove:

Problem (P vs. NP)

P ̸= NP

This is one of the seven Millennium Prize Problems. Solving it comes with
a $1 million dollar reward.
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Examples

An NP-complete problem:

Solving an arbitrary n2 × n2 sudoku grid of n × n blocks is NP-complete.
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Examples

Another NP-complete problem:

It is NP-complete to assemble an optimal Bitcoin block.
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Examples

An NP-hard problem:

It is NP-hard to decide whether the goal is reachable from the start of a
stage in generalized Super Mario Bros [1].
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Another Strategy to Get Rich

If you can design a fast algorithm for sudoku or Mario,
you can build optimal Bitcoin blocks and break most cryptosystems!

There is a deep fundamental connection between all these problems
(and many more).
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Partition Problem

Definition (Partition Problem)

Let S = {a1, . . . , an} be a multiset of integers or rational numbers. Given
S , find a partition S into two disjoint subsets S1 and S2 such that the sum
of elements in S1 is equal to the sum of elements in S2.

Example

Consider S = {3, 1, 1, 2, 2, 1}. Let S1 = {1, 1, 1, 2} and S2 = {2, 3}.

1 + 1 + 1 + 2 = 5

2 + 3 = 5

The elements of S1 and the elements of S2 both sum to 5 and form a
partition of S .

The partition problem is NP-complete!
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That’s enough on complexity theory for now...
don’t worry, it will be back!

Let’s move on to our next topic:
optimization and signal processing.
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L0 Norm

Definition (L0 Norm)

For a vector x ∈ Rn, we define ∥x∥0 to be the number of nonzero entries
in x . This is known as the L0 norm (or Hamming weight if in Fn

q).

Example

We have the following L0 norms of vectors.

∥(1, 0, 0, 1, 1)∥0 = 3

∥(π, 0, 0, e, 0)∥0 = 2

∥(0, 0, . . . , 0)∥0 = 0

∥(1, 1, . . . , 1)∥0 = n
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Other Norms

Recall also the L1, L2, and Lp norms:

∥x∥1 =
n∑

i=1

|xi |

∥x∥2 =

√√√√ n∑
i=1

x2i

∥x∥p =

(
n∑

i=1

|xi |p
)1/p
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Compressed Sensing

An important problem in signal processing is known as the compressed
sensing problem.

Problem (Compressed Sensing)

Given A ∈ Rm×n and b ∈ Rm, find the sparsest solution to the system
Ax = b.

With m < n, compressed sensing is used to reconstruct sparse signals of
length n from m samples. We can formulate this as a minimization
problem using our L0 norm:

min
x∈Rn

∥x∥0

subject to Ax = b
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Unfortunately, compressed sensing is known to be NP-hard. To overcome
this, various alternative problems have been proposed to approximate
sparse solutions.

1 L1 Minimization: min{∥x∥1 : Ax = b, x ∈ Rn}
2 Greedy Algorithms

3 Lp Minimization: min{∥x∥p : Ax = b, x ∈ Rn} for p < 1

4 L1 − L2 Minimization [2]: min{∥x∥1 − ∥x∥2 : Ax = b, x ∈ Rn}

We will be focusing on L1 − L2 minimization for the rest of this talk.
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Is L1 − L2 Minimization Better than L1?

Image from [3].
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Recall the L1 − L2 minimization problem:

min
x∈Rn

∥x∥1 − ∥x∥2

subject to Ax = b

The constraints Ax = b are nice! Unfortunately, the objective function
∥x∥1 − ∥x∥2 has some bad properties. It is:

Nonlinear

Non-convex

Non-differentiable

Non-separable

This makes our problem difficult to analyze and work with. Luckily, it has
a few redeeming qualities. It is also:

A difference of convex functions

Lipschitz continuous

∥x∥1 − ∥x∥2 ≥ 0

Kyle Yates (Clemson) L1 − L2 Minimization August 29, 2024 17 / 42



Main Result: NP-hardness of L1 − L2 Minimization

Theorem (Y. Ouyang, K. Y.)

The optimization problem

min
x∈Rn

∥x∥1 − ∥x∥2

subject to Ax = b

is NP-hard.

This result is fairly involved to prove, so we’ll prove it in a few pieces.

1 First, we’ll prove an additional lemma.

2 Second, we’ll prove an easier version of this problem with
non-negative variables.

3 Finally, we’ll extend the non-negative version to the general version.
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Consider the minimization problem

min
x ,y∈Rn

f (x , y) =
n∑

i=1

(xi + yi )−

√√√√ n∑
i=1

x2i + y2i

subject to xi + yi = 1 for i = 1, . . . , n

xi , yi ≥ 0 for i = 1, . . . , n

(1)

Lemma (Y. Ouyang, K. Y.)

The set of optimal solutions to (1) is

X ∗ = {(x , y) ∈ R2n | (xi , yi ) = (0, 1) or (xi , yi ) = (1, 0) ∀i ∈ [n]}

with optimal objective value n −
√
n.
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Proof. Any feasible solution to (1) satisfies xi + yi = 1 for each i , meaning
any feasible solution satisfies

∑n
i=1(xi + yi ) = n. So, (1) is equivalent to

min
x ,y∈Rn

h(x , y) = n −

√√√√ n∑
i=1

x2i + y2i

subject to xi + yi = 1 for i = 1, . . . , n

xi , yi ≥ 0 for i = 1, . . . , n

(2)
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Since n is constant, we can find an optimal solution to (1) by solving

max
x ,y∈Rn

√√√√ n∑
i=1

x2i + y2i

subject to xi + yi = 1 for i = 1, . . . , n

xi , yi ≥ 0 for i = 1, . . . , n

We have that
x2i + y2i ≤ xi + yi = 1

with equality holding if and only if (xi , yi ) = (1, 0) or (xi , yi ) = (0, 1) for
each i . Thus, the set of optimal solutions is X ∗. The optimal objective
value follows immediately.
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This will be enough to show that the nonnegative version of the problem is
NP-hard.

Theorem (Y. Ouyang, K. Y.)

The optimization problem

min
x∈Rn

∥x∥1 − ∥x∥2

subject to Ax = b

x ≥ 0

(3)

is NP-hard.

We show this by providing a polynomial time reduction from the
NP-complete partition problem to L1 − L2 minimization.
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Proof. Suppose we have an instance of the partition problem with multiset
S = {a1, . . . , an} and let a = (a1, a2, . . . , an). Without loss of generality to
dimension, let (x , y) = (x1, . . . , xn, y1, . . . , yn) be the vector of decision
variables for (3) and define A ∈ R2n×(n+1) and b ∈ R(n+1) as

A =

[
In In
aT −aT

]
, b =

[
1
0

]
,

where In is an n × n identity matrix and 1 is a vector of n ones. Then, (3)
is equivalent to (1) with additional constraint aT (x − y) = 0. i.e., we have
the problem

min
x ,y∈Rn

f (x , y) =
n∑

i=1

(xi + yi )−

√√√√ n∑
i=1

x2i + y2i

subject to xi + yi = 1 for i = 1, . . . , n

aT (x − y) = 0

xi , yi ≥ 0 for i = 1, . . . , n

(4)
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If (3) has optimal solution (x , y) with objective value f (x , y) = n −
√
n,

then we must have aT (x − y) = 0 and (x , y) ∈ X ∗. Let X be the set of
indices such that xj = 1 and yj = 0, and let Y be the set of indices such
that xj = 0 and yj = 1. Since aT (x − y) = 0, we have

∑
j∈X

aj =
n∑

j=1

ajxj = aT x = aT y =
n∑

j=1

ajyj =
∑
j∈Y

aj

which solves the partition problem. Likewise, if the partition problem has a
solution, then, there is a vector (x , y) ∈ X ∗ such that aT (x − y) = 0.
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On the other hand, suppose there is no solution to the partition problem.
Then, there is no (x , y) ∈ X ∗ such that aT (x − y) = 0, and an optimal
solution to (3) must have objective value strictly larger than n −

√
n by

our lemma. Likewise, if (3) has optimal solution (x , y) with objective value
f (x , y) > n −

√
n, then (x , y) ̸∈ X ∗ and the partition problem has no

solution. Thus, (3) is NP-hard.
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The last part of this proof is pretty dense. Think of it this way:

- If a solution to the partition problem exists, we can find it from
solving this specific optimization problem.

- If a solution to the partition problem does NOT exist, we can also
determine this from solving our optimization problem.

- If we can solve L1 − L2 minimization, we can solve the partition problem.
This means L1 − L2 minimization is at least as hard as the partition
problem.
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Extension to the Non-negative Setting

We are off to a good start, but remember that we have not actually solved
the original problem. We have shown NP-hardness when x is restricted to
be non-negative – but we also want to show this result for the general case.

This is more difficult than we may anticipate. Recall that in a previous
proof, we used the fact that

x2i + y2i ≤ xi + yi = 1

But, this was only true since 0 ≤ xi , yi ≤ 1. So, we can not use the same
argument as before.
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Consider the minimization problem

min
x ,y∈Rn

f (x , y) =
n∑

i=1

|xi |+ |yi | −

√√√√ n∑
i=1

x2i + y2i

subject to xi + yi = 1 for i = 1, . . . , n

(5)

Lemma (Y. Ouyang, K. Y.)

The set of optimal solutions to (5) is

X ∗ = {(x , y) ∈ R2n | (xi , yi ) = (0, 1) or (xi , yi ) = (1, 0) ∀i ∈ [n]}

with optimal objective value n −
√
n.

→ more OR background is needed for this result
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Proof. First, note that the case when x ≥ 0 and y ≥ 0 has already been
discussed, which has optimal objective value n −

√
n. So, fix a feasible

solution (x ′, y ′) to (5) such that x ′j < 0 for some fixed index j .

We claim that f (x ′, y ′) > n −
√
n. We’ll show this by formulating an

alternate optimization problem.

Let I be the set of indices such that x ′i < 0. Without loss of generality, we
can assume all negative components are x ′i ’s, as if there is a negative
component y ′i < 0, then simply swap x ′i and y ′i .
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Note I is nonempty since j ∈ I . By the constraints of (5), it is clear we
must have y ′i > 1 for all i ∈ I . For all i ∈ I , we write

x ′i = −ϵ′i ,

y ′i = 1 + ϵ′i

for some ϵ′i > 0. For all k ̸∈ I , we write

x ′k = ϵ′k ,

y ′k = 1− ϵ′k

for some 1 ≥ ϵ′k ≥ 0 for all k ̸∈ I . Let ϵ′ = (ϵ′1, . . . , ϵ
′
n) ∈ Rn be the vector

of these values.
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Define the function g : Rn → R as

g(ϵ) =∑
i∈I

(ϵi +1+ ϵi )+
∑
i ̸∈I

(ϵi +1−ϵi )−
√∑

i∈I
ϵ2i + (1 + ϵi )2 +

∑
i ̸∈I

ϵ2i + (1− ϵi )2

= n + 2
∑
i∈I

ϵi −
√∑

i∈I
ϵ2i + (1 + ϵi )2 +

∑
i ̸∈I

ϵ2i + (1− ϵi )2

This may seem complicated, but this is just the function

f (x , y) =
∑n

i=1 |xi |+ |yi | −
√∑n

i=1 x
2
i + y2i replaced in terms of ϵ’s.

Notice that f (x ′, y ′) = g(ϵ′).
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Remember: we wanted to show f (x ′, y ′) > n −
√
n.

Since f (x ′, y ′) = g(ϵ′), it suffices now to show that g(ϵ′) > n −
√
n.
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Now, we consider the problem

min
ϵ∈Rn

g(ϵ) = n+2
∑
i∈I

ϵi −
√∑

i∈I
ϵ2i + (1 + ϵi )2 +

∑
i ̸∈I

ϵ2i + (1− ϵi )2

subject to ϵi ≤ 1 for all i ̸∈ I

ϵi ≥ 0 for all i = 1, . . . , n

(6)

Note that ϵ′ is feasible to (6). Any optimal solution to (6) will have
ϵi ∈ {0, 1} for i ̸∈ I , as we can maximize the term∑

i ̸∈I
ϵ2i + (1− ϵi )

2

with 0 ≤ ϵi ≤ 1 for i ̸∈ I independent from the rest of the problem.
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Let I c = [n] \ I . Therefore, we can solve (6) by instead looking at the
problem

min
ϵ∈R|I |

h(ϵ) = n+2
∑
i∈I

ϵi −
√∑

i∈I
ϵ2i + (1 + ϵi )2 + |I c |

subject to ϵi ≥ 0 for i ∈ I

(7)

We will now show that g(ϵ′) > n −
√
n by showing that the optimal

objective value to (6) and (7) is n−
√
n, and also that ϵ′ is not an optimal

solution to (6). For the constraints ϵi ≥ 0 for i ∈ I of (7), let {µk}k∈I be
the associated Lagrange multipliers. The KKT FONC are

2− 1 + 2ϵk√∑
i∈I ϵ

2
i + (1 + ϵi )2 + |I c |

− µk = 0 for k ∈ I

ϵk(−µk) = 0 for k ∈ I
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We now consider cases. First, suppose that there is a KKT point ϵ with
ϵk = 0 for all k ∈ I . Then, we have√∑

i∈I
ϵ2i + (1 + ϵi )2 + |I c | =

√
|I |+ |I c | =

√
n

The gradient condition then becomes

2− 1√
n
− µk = 0 for k ∈ I

Solving for µk , this gives

µk = 2− 1√
n
for k ∈ I

Note that since n ≥ 1, µk > 0 for all k ∈ I , which is dual feasible. So,
there always exists a KKT point of this form, which has objective value
n −

√
n.
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Now, suppose there is a KKT point ϵ with some k ∈ I such that ϵk > 0.
Then, µk = 0. The gradient condition for this k is

2− 1 + 2ϵk√∑
i∈I ϵ

2
i + (1 + ϵi )2 + |I c |

= 0

⇒
√∑

i∈I
ϵ2i + (1 + ϵi )2 + |I c | = 1 + 2ϵk

2
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In this case, the objective value at the point ϵ must be

g(ϵ) = n + 2
∑
i∈I

ϵi −
√∑

i∈I
ϵ2i + (1 + ϵi )2 + |I c |

= n + 2
∑
i∈I

ϵi −
1 + 2ϵk

2

= n + ϵk + 2
∑
i∈I
i ̸=k

ϵi −
1

2

> n −
√
n

The last inequality follows from the fact that ϵi ≥ 0 for all i ∈ I and n ≥ 1.
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The last inequality follows from the fact that ϵi ≥ 0 for all i ∈ I and
n ≥ 1. Thus, the set of optimal solutions to (6) is given by

E∗ =

{
ϵ ∈ Rn

+ :

{
ϵk = 0 if k ∈ I

ϵk ∈ {0, 1} if k ̸∈ I

}}

Now, observe that ϵ′ ̸∈ E∗ since j ∈ I and ϵ′j > 0, so

f (x ′, y ′) = g(ϵ′) > n −
√
n. Hence, (x ′, y ′) is not optimal to (5). Since

(x ′, y ′) was any arbitrary feasible solution to (5) with at least one negative
component, no feasible solutions of this type are optimal. Thus, the set of
optimal solutions to (5) is

X ∗ = {(x , y) ∈ R2n | (xi , yi ) = (0, 1) or (xi , yi ) = (1, 0) ∀i ∈ [n]}
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Final Result

Proving this optimal set is the difficult part. Once that we have it, our
main theorem follows just as before.

Theorem (Y. Ouyang, K. Y.)

The optimization problem

min
x∈Rn

∥x∥1 − ∥x∥2

subject to Ax = b

is NP-hard.
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Other Results

In this work, we also consider the unconstrained L1 − L2 problem:

min
x∈Rn

∥Ax − b∥22 + λ(∥x∥1 − ∥x∥2)

for penalty parameter λ > 0. This problem turns out to also be NP-hard
for some λ (which is much more difficult to prove).
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Thank you!
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