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What is Homomorphic Encryption?

Homomorphic encryption allows for addition and multiplication to be
performed on ciphertexts (ie, encrypted messages) without needing to
decrypt or posess any knowledge of private information.

Furthermore, ciphertext computations result in the same output as the
corresponding plaintext computations. That is, for messages m0,m1 and
encryption key k,

Enc(m0, k) + Enc(m1, k) = Enc(m0 +m1, k)
Enc(m0, k)Enc(m1, k) = Enc(m0m1, k)
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Applications in Secure Cloud Computing

Cloud computing has become increasingly popular
▶ Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform
(GCP)

AWS - Encryption services provided in transit and at rest.

Homomorphic encryption allows us to maintain encryption during
computation.
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Traditional cloud storage and computation

Figure from https://www.microsoft.com/en-us/research/project/microsoft-seal/
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Microsoft SEAL cloud storage and computation

Figure from https://www.microsoft.com/en-us/research/project/microsoft-seal/
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Today’s talk will cover

1 Ciphertext structures

2 Ciphertext noise growth

3 Noise management techniques & computation budgeting

We will not discuss how the actual homomorphic operations work, but the
results today are important to budgeting homomorphic computation.

Three main schemes in homomorphic encryption: BFV and BGV (exact),
and CKKS (approximate). We will focus on the BFV scheme.
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Notation

Define Zq as the ring of centered representatives Zq := Z ∩ (−q/2, q/2].

When given an integer x , we denote [x]q as the reduction of x into the
interval Zq such that q divides [x]q − x . When x is a polynomial or vector,
[x]q means applying [·]q to each coefficient.

We define Rn as the ring

Rn := Z[x]/(Φ(x))

where Φ(x) is an mth cyclotomic polynomial of degree n, a power of two.
Namely, Φ(x) = xn + 1.

Rn,q := Zq [x]/(Φ(x))
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Notation

For any polynomial f (x) = ∑k
i=0 aix

i with ai ∈ R, the infinity norm of f (x)
is defined as

∥f (x)∥∞ = max{|a0 |, . . . , |ak |}

therefore using centered representatives, for any f (x) ∈ Rn,q we have
∥f (x)∥∞ ≤ q/2.

The symbols ⌊·⌋ and ⌈·⌉ will denote floor and ceiling respectively, whereas
⌊·⌉ will denote rounding to the nearest integer.

For a set S and a given probability distribution 𝜒, we let 𝜒(S) denote that
distribution on S . We will denote U (S) as a uniform distribution on S .
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Keys and Messages

We’ll only look at the private key version of BFV, but a public key version
is achievable with some simple modifications.

The secret key is chosen as some sk = s ∈ Rn,3, which is a polynomial with
coefficients in {−1, 0, 1}.

The messages are of the form m0 ∈ Rn,t , where t is a positive integer ≪ q.
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BFV Private Key Encryption

Consider a message m0 ∈ Rn,t . We then encrypt the message using the
secret key sk = s ∈ Rn,3, a constant Dq = ⌊q/t⌋ ∈ Z+, and a chosen
parameter 𝜌 ∈ Z+ as follows:

1 Sample e0 ← 𝜒(Rn) such that ∥e0∥∞ ≤ 𝜌.

2 Sample a0 ← U (Rn,q).
3 Compute b0 ∈ Rn,q via b0 = −a0s + Dqm0 + e0 mod (Φ(x), q).
4 Return ct0 = (a0, b0).

The ordered pair ct0 = (a0, b0) ∈ R2
n,q is our BFV ciphertext.
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A BFV ciphertext ct0 = (a0, b0) ∈ R2
n,q satisfies the following relationship:

b0 + a0s ≡ Dqm0 + e0 mod (Φ(x), q)

ciphertext componentsciphertext components
secret key

constant

message

noise/error term

Public: q, t ∈ Z with q ≫ t Private: s ∈ Rn,3

Dq = ⌊q/t⌋ ∈ Z m0 ∈ Rn,t

Φ(x) ∈ Z[x] of degree n e0 ∈ Rn

ct0 = (a0, b0) ∈ R2
n,q
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This format is special because we can define addition and multiplication
on ciphertexts. That is, given ct0 and ct1, we can compute either of

ct0 + ct1

ct0 × ct1

The main issue with ciphertext operations: as we perform ciphertext
operations, the noise term grows. If noise gets too big, we can no longer
accurately decrypt our message.
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Suppose ct0, ct1 are BFV ciphertexts with noise terms e0, e1 respectively
such that ∥e0∥∞ , ∥e1∥∞ ≤ E .

Ciphertext Noise Growth in Operations

noise E

noise E

+ noise 2E + t

noise E

noise E

× noise ≈ E𝛿Rt + 𝛿2Rt
2

Here, 𝛿R = max{ ∥a·b∥∞
∥a∥∞ · ∥b∥∞ : a, b ∈ Rn} is the expansion factor of Rn.
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If ciphertext noise grows too much, we can no longer decrypt. The
question becomes: How can we manage this noise?

We use a technique called modulus reduction to manage the growth of
ciphertext noise.
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Modulus Reductions (Noise Control)

The idea behind modulus reductions:

Take a ciphertext ct0 ∈ R2
n,Q for some integer ciphertext modulus Q.

Scale down ct0 into R2
n,q for some q < Q while preserving the

message and structure of the format.
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Modulus Reductions (Noise Control)

For the following, let DQ = ⌊Q/t⌋ and Dq = ⌊q/t⌋ with Q > q.

Input: Q ∈ Z+ an integer, q ∈ Z+ an integer, and ct0 = (a0, b0) ∈ R2
n,Q a

BFV ciphertext satisfying b0 + a0s ≡ DQm0 + e0 mod (Φ(x),Q).

1 Compute a′0 = ⌊
qa0
Q ⌉ and b′0 = ⌊

qb0
Q ⌉.

2 Return ct′0 = (a′0, b′0) ∈ R2
n,q, a BFV ciphertext satisfying

b′0 + a′0s ≡ Dqm0 + eMR mod (Φ(x), q) for some eMR.

Questions we have: Does this actually work? What happens to the
noise?
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Let 𝜖Q = Q/t − DQ , 𝜖q = q/t − Dq, 𝜖a0 = qa0/Q − a′0, and
𝜖b0 = qb0/Q − b′0. By assumption, we first note that (a0, b0) ∈ R2

n,Q is a
BFV ciphertext. That is,

b0 ≡ −a0s + DQm0 + e0 mod (Φ(x),Q)

Therefore, there is some rQ ∈ Rn such that b0 + a0s ≡ DQm0 + e0 + QrQ
mod Φ(x). Then,

b′0 =
qb0
Q
− 𝜖b0

≡ −qa0s
Q
+ qDQ

Q
m0 +

qe0
Q
− 𝜖b0 + qrQ mod Φ(x)

Note that as DQ = Q/t − 𝜖Q , we have that qDQ/Q = q/t − q𝜖Q/Q. Since
q/t = Dq + 𝜖q, we have qDQ/Q = Dq + 𝜖q − q𝜖Q/Q.
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Therefore,

b′0 ≡ −
qa0s

Q
+ qDQ

Q
m0 +

qe0
Q
− 𝜖b0 + qrQ mod Φ(x)

≡ −a′0s + 𝜖a0s + Dqm0 + (𝜖q −
q𝜖Q
Q
)m0 +

qe0
Q
− 𝜖b0 + qrQ mod Φ(x)

≡ −a′0s + Dqm0 + eMR mod (Φ(x), q)

where
eMR =

qe0
Q
+ (𝜖q − q𝜖Q/Q)m0 − 𝜖b0 + 𝜖a0s

Therefore, b′0 + a′0s ≡ Dqm0 + eMR mod (Φ(x), q).
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Reducing the modulus reduces the noise!

At the end of the day, we get an noise bound of the following for our new
ciphertext after modulus recduction.

∥eMR∥∞ ≤
q

Q
E + t + 1

2
+ 𝛿R ∥s ∥∞

2

Here, E is our initial input noise bound and Q > q. We also have
Q , q, t, 𝛿R , ∥s ∥∞ as either constants or predetermined parameters.
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ct0 ∈ R2
n,Q

ct1 ∈ R2
n,Q

× ct2 ∈ R2
n,Q

mod reduce

ct′0 ∈ R2
n,q

ct′1 ∈ R2
n,q

× ct′2 ∈ R2
n,q
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Modulus Leveling

Let qℓ+1 > qℓ > · · · > q0 be distinct primes, and define Q0, . . . ,Qℓ+1 as

Qi =

i∏
j=0

qj

We call Qi the modulus at level i .
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Qℓ+1 = q0q1q2 . . . qℓqℓ+1

Qℓ = q0q1q2 . . . qℓ
...

Q3 = q0q1q2q3

Q2 = q0q1q2

Q1 = q0q1

Q0 = q0

Note Qi/Qi−1 = qi for any i ∈ {1, . . . , ℓ + 1}. The idea is that we will
periodically reduce the modulus from Qi to Qi−1 to reduce the noise.
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ct0 ∈ R2
n,Qi

ct1 ∈ R2
n,Qi

× ct2 ∈ R2
n,Qi

mod reduce

ct′0 ∈ R2
n,Qi−1

ct′1 ∈ R2
n,Qi−1

× ct′2 ∈ R2
n,Qi−1

mod reduce

ct′′0 ∈ R2
n,Qi−2

ct′′1 ∈ R2
n,Qi−2

· · · · · ·

mod reduce

ct∗0 ∈ Rn,Q0
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Modulus leveling allows for us to construct a leveled homomorphic
scheme.

This means we have a scheme that allows for some predetermined number
of addition and multiplication operations.
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Improvements and Results

Lemma

Suppose that t |q − 1 and 𝛿R ≥ 16. For two BFV ciphertexts with integer
modulus q noise bound E , their product has noise emult satisfying

∥emult∥∞ ≤ 4Et𝛿2R ∥s ∥
2
∞

Classic BFV:
∥emult∥∞ ≤ 2𝛿RtE (1 + 𝛿R ∥s ∥∞) + 2𝛿2Rt

2(∥s ∥∞ + 1)2 ≈ E𝛿Rt + 𝛿2Rt
2

Lemma

Suppose we have a BFV ciphertext with noise bounded by E . Let eMR be
the noise term resulting from performing a modulus reduction from Q to
q. If t |Q − 1, t |q − 1, and Q/q > 2E

𝛿R ∥s ∥∞−2 , then
∥eMR∥∞ < 𝛿R ∥s ∥∞.
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Lemma

Suppose qi > 10kt𝛿2R ∥s ∥
2
∞. Then, for two vectors of ciphertexts

u = (u1, . . . , uk ) ∈ (R2
n,Qi
)k and v = (v1, . . . , vk ) ∈ (R2

n,Qi
)k , each with

noise bounded by 𝛿R ∥s ∥∞, we can choose to homomorphically compute
up to one of the following:

1
∑
ujvj or

2 (∑ uj ) (
∑
vj )

Furthermore, reducing the modulus by qi immediately after this
computation always results in a ciphertext with noise bounded by 𝛿R ∥s ∥∞.

For the optimized case, this is just qi > 10ktn2.
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u1 v1 u2 v2 . . . uk−1 vk−1 uk vk

× × × ×

+

∑
ujvj

. . .

. . .

Figure: Homomorphic inner product for each qi
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u1 u2 . . . uk−1 uk v1 v2 . . . vk−1 vk

+ +

×

(∑ ui ) (
∑
vi )

Figure: Homomorphic product of sums for each qi

Kyle Yates (Clemson) Homomorphic Encryption March 2, 2024 28 / 29



Thank You!
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