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Outline

This talk will consist of 2 parts:

Part 1: An Introduction to Post-Quantum Cryptography (∼25 mins)

Part 2: Worst-case Precision Accuracy Bounds in Approximate
Homomorphic Encryption (∼20 mins)
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Part 1:

An Introduction to Post-Quantum Cryptography
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What is Quantum Computing?

Quantum computers are computers that use quantum bits (qubits)
rather than classical bits.

The fundamental structure of qubits is different from classical bits and
allows for some calculations to be performed exponentially faster than
modern computers.

Quantum computers are still in their infancy, but do have potential.

Kyle Yates (Clemson) AMS Sectional Meeting March 8, 2025 4 / 35



Timeline

© 2023 Nokia35

Richard Feynman
proposes to build a 
quantum computer 
for simulation

Peter Shor
Algorithm for prime 
factorization of 
large integers

Lov Kumar Grover
shows how to search 
in √!

Google
Quantum
supremacy 
announced

IBM
Unveils breakthrough 
433-Qubit Quantum 
Processor

A brief quantum computer timeline

1982 19971994 2019 2023

Most Recently: Microsoft Majorana 1 chip February 19, 2025 (Still lots of skepticism).

Courtesy: Nokia-Bell Labs
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Timeline

Quantum Computation

• Quantum Supremacy: Google/NASA, Oct 2019
• 200 seconds vs. 10,000 years (for random sampling)
• (but Zhang et al, Aug 2022…)

• Power Source: entangled qubits (superposition)

• Threat: can solve problems once thought 
mathematically intractable
• Includes most crypto-systems employed today       

(e.g., ecliptic curve cryptography)
• Attack: Store-now / Crack-later

~40 K

4 K

1 K
100 mK

~15 mK

IBM Quantum Computer (source: IBM)

© 2023 Nokia36

Courtesy: Nokia-Bell Labs
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How do Quantum Computers Impact Modern
Cryptographic Systems?

What Can a Quantum Computer Do Efficiently?

Integer Factorization i.e. find p from pq

Discrete Logarithm i.e. find x from g , g x mod p

Discrete Logarithm on Elliptic Curves

Finding Generators of a Principal Ideal

What Can a Quantum Computer NOT Do Efficiently?

We don’t know yet. But, we suspect...
▶ Decode random linear codes.
▶ Solve multivariate quadratic equations over finite fields.
▶ Solve lattice problems.
▶ Find isogenies between elliptic curves.
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Post-Quantum Cryptography

Cryptography that can be implemented on a classical computer but will
(hopefully) be secure against attacks completed on either a classical or a

quantum computer.

There has been a push to move towards Post-Quantum Cryptography with
the possible threat of quantum computers.
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NIST Standardization Process

2016

NIST call

2017

Round 1: 69 Candidates

2019

Round 2: 26 Candidates

2020

Round 3: 7 Candidates
8 alternates

2022

4 Selected, 4 Round 4

2023

Additional Call:
40 Candidates

2024

Sigs 2nd Round
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We’ll briefly discuss 4 popular approaches for post-quantum cryptography:

1 Code-based cryptography

2 Multivariate cryptography

3 Lattice-based cryptography

4 Isogeny-based cryptography

.
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Coding Theory

An [n, k]-linear code C is a k-dimensional subspace of Fn
q. We call n

the length of the code, and k its dimension. An element x ∈ Fn
q is

called a codeword if x ∈ C.
The number of nonzero elements in x is called the Hamming weight
of x and we denote it as wt(x).

We define a basis matrix G of C to be the generator matrix of the

code. A parity check matrix of C is H ∈ F(n−k)×n
q such that the

right kernel of H is the code C. The subspace spanned by the rows of
H is called the dual code of C.
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Code-Based Cryptography
Hard Problems

Problem (Decoding a random code)

Given a random linear code C and a vector y = x+ e (wt(e) ≤ t, x ∈ C),
find x.

Problem (SD: Syndrome Decoding)

Given a parity check matrix H ∈ F(n−k)×n
q and a vector s ∈ Fn−k

q (called

the syndrome), find a vector e ∈ Fn
q such that He⊤ = s⊤ and wt(e) ≤ t.
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Multivariate Cryptography

Setting: finite field Fq

Multivariate equations: equations in many variables
▶ Linear equations:

⋆ Example: 3 equations in 3 variables over F5

x1 + 4x2 + 2x3 = 2

x1 + 3x2 = 3

x1 + x2 + 4x3 = 3

⋆ Ways to solve: Gaussian Elimination

▶ Quadratic Equations:
⋆ Example: 3 equations in 3 variables over F5

x2
1 + 4x2x1 + 2x3x2 = 2

x1x3 + 3x2
2 + x3 = 3

x1x2 + x2 + 4x3 = 3

⋆ Ways to solve: Polynomial Solvers, Gröbner basis algorithms
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Multivariate Cryptography
Hard Problem

Problem (MQ: Multivariate Quadratic)

Given a system of multivariate quadratic equations over a finite field, find
a solution.
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Lattices

Vector Spaces
▶ Let B = (b1, . . . ,bn) ∈ Rm×n be a matrix of rank n. Consider the set

V =

{
m∑
i=1

cibi : ci ∈ R

}
.

▶ Then V is a vector space, and we call B a basis of V .

Lattices
▶ Let B = (b1, . . . ,bn) ∈ Rm×n be a matrix of rank n. Consider the set

L = L(B) =

{
m∑
i=1

cibi : ci ∈ Z

}
.

▶ Then L is a discrete additive subgroup of Rm, called a lattice of rank
n, and B is a lattice basis of L.
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Lattice-Based Cryptography
Hard Problems

Problem (SVP: Shortest Vector Problem)

Given a basis B of L, find the shortest nonzero vector. i.e., find nonzero
v ∈ L such that ∥v∥2 is minimized.

Problem (LWE: Learning With Errors)

Let s ∈ Zn
q fixed. Given many pairs (ai , bi ) ∈ Zn

q × Zq where ai is uniform
random and bi is computed as

bi = ⟨ai , s⟩+ ei mod q

for small random ei ∈ Z (from some discrete subgaussian distribution),
find s.

[Regev 2005] LWE problem is as hard as worst-case δ-SVP on a quantum
computer for δ = Õ(n1.5).
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Isogeny-Based Cryptography

An elliptic curve E over a field F is the set of solutions (x , y) ∈ F2 to

y2 = x3 + ax + b

for suitable fixed a, b ∈ F, plus a ‘point at infinity’ O.

An isogeny ϕ between elliptic curves E1 and E2 is a rational map
ϕ : E1 → E2 that preserves addition (i.e., is a group homomorphism).
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Isogeny-Based Cryptography

Problem

Given two elliptic curves E1,E2 find an isogeny ϕ (if it exists) such that

ϕ : E1 → E2
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Part 2:

Worst-case Precision Accuracy Bounds in
Approximate Homomorphic Encryption
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Homomorphic encryption allows for addition and multiplication to be
performed on ciphertexts without decrypting or possessing the secret key.

Furthermore, ciphertext computations result in the same output as
plaintext computations. That is, for messages m0,m1 and key k,

Enc(m0, k) + Enc(m1, k) = Enc(m0 +m1, k),

Enc(m0, k)× Enc(m1, k) = Enc(m0 ·m1, k).
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Notation

For positive q, let Zq := Z ∩ [−q/2, q/2).

For n a power of two, define the rings Rn and Rn,q via

Rn := Z[x ]/(xn + 1),

Rn,q := Zq[x ]/(x
n + 1).
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CKKS Structure

We’ll discuss the Cheon-Kim-Kim-Song (CKKS) scheme ([1], 2016), which
allows for homomorphic encryption with approximate arithmetic of
numbers.

Our message space in CKKS is Cn/2. The general structure of CKKS is as
follows.

1 Encode a message z ∈ Cn/2.

2 Encrypt an encoded message from Rn into a ciphertext in R2
n,q.

3 Do ciphertext computation in R2
n,q

4 Decrypt a ciphertext from R2
n,q to Rn using the secret key.

5 Decode back to Cn/2.
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CKKS Preliminaries

For the encoding procedure, we need to define the following spaces and
mappings:

H = {z ∈ Cn : zj = zn−j}.

π : H → Cn/2 is the projection of H onto Cn/2.

σ : C[x ]/(xn + 1) → Cn is the canonical embedding map. Let
ζ1, ζ2, . . . , ζn be the n roots of Φ(x) = xn + 1, which are all 2nth primitive
roots of unity. Given a polynomial w ∈ C[x ]/(xn + 1), σ is defined via

σ(w) = (w(ζ1),w(ζ2), . . . ,w(ζn)) ∈ Cn
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CKKS Mappings

The mappings

π : H → Cn/2, σ : C[x ]/(xn + 1) → Cn

are both isomorphisms. Furthermore, σ establishes an isomorphism
between R[x ]/(xn + 1) and H. Thus, we have the isomorphisms

π ◦ σ : R[x ]/(xn + 1) → Cn/2,

σ−1 ◦ π−1 : Cn/2 → R[x ]/(xn + 1).

Note that π ◦ σ is a scaled isometry in the 2-norm:

∥(π ◦ σ)(w)∥2 =
√

n

2
∥w∥2 .

Kyle Yates (Clemson) AMS Sectional Meeting March 8, 2025 24 / 35



CKKS Encoding and Decoding

For z ∈ Cn/2 and ∆ ∈ N, CKKS encoding is

Ecd(z ,∆) = ⌊σ−1(∆π−1(z))⌉ ∈ Z[x ]/(xn + 1).

For m ∈ Z[x ]/(xn + 1) and ∆ ∈ N, CKKS decoding is

Dcd(m,∆) = π(σ(∆−1m)) ∈ Cn/2.

An observation: the rounding step in encoding adds some error to our
message.
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Recall that Rn = Z[x ]/(xn + 1) and Rn,q = Zq[x ]/(x
n + 1).

CKKS Mappings

Cn/2∆π−1
// H σ−1

// R[x ]/(xn + 1)
⌊·⌉
// Rn

encrypt
// R2

n,q

computation

��

Cn/2 H
∆−1π
oo Rnσ

oo R2
n,qdecrypt

oo
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CKKS Encryption

Once an encoded message m = Ecd(z ,∆) ∈ Rn is established, a secret
polynomial s with coefficients in {0,±1} is chosen.

Encryption

Step 1. Sample a uniform randomly from Rn,q.

Step 2. Sample e randomly from Rn with small coefficients.

Step 3. Compute b = −as +m + e mod (xn + 1, q).

Step 4. Return ct = (a, b) ∈ R2
n,q.

Observe that b + as ≡ m + e mod (xn + 1, q).
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CKKS Decryption

Suppose we are given s and ct = (a, b) ∈ R2
n,q satisfying

b + as ≡ m + e mod (xn + 1, q).

Decryption

Step 1. Compute m′ = b + as mod (xn + 1, q).

Step 2. Compute z ′ = Dcd(m′,∆).

Step 3. Return z ′.

Since m′ = m + e, note that z ′ will be different from the original message
z ∈ Cn/2. Furthermore, the error term e expands with ciphertext
operations. This makes ∥z − z ′∥ larger.
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Precision Loss in CKKS

Definition (Precision Loss, [2])

Consider a normed space (M, ∥·∥), messages m1, . . . ,mN ∈ M, and a
circuit C : MN → M. Then we define the precision loss associated with
calculating the circuit C homomorphically as the distance ∥m̃ −m∥, where
m̃ is the output of the homomorphic evaluation of C (m1, . . . ,mN), and m
is the true value of the circuit.

We wish to determine worst-case precision accuracy bounds based on
allowed amount of computations in CKKS.

The topic of precision accuracy is surprisingly understudied from the
theoretical perspective (Costache et al. 2023 [2]).

Kyle Yates (Clemson) AMS Sectional Meeting March 8, 2025 29 / 35



The analyses of noise and precision is usually in the canonical embedding
norm, which is the infinity norm of the canonical embedding. i.e., for
w ∈ C[x ]/(xn + 1),

∥w∥can∞ = ∥σ(w)∥∞ .

This allows us to discuss sizes of error polynomials e ∈ Rn directly in the
message space Cn/2.

We consider the total precision loss as

Total precision loss = Precision loss from encoding error

+ Precision loss from encryption error.
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Precision Loss from Encoding

CKKS encoding and decoding is implemented with fast Fourier transforms
(FFTs), which also contributes to additional error.

Lemma

Let m be the true CKKS encoding of message z ∈ Cn/2, and m̂ the CKKS
encoding of z obtained from using IEEE 754 double floating-point
arithmetic. Suppose that ∥z∥∞ ≤ 249/∆. Then, ∥m̂ −m∥∞ ≤ 1.

Corollary

For z ∈ Cn/2, suppose that m̂ ∈ Rn is the CKKS encoding of z computed
in IEEE 754 double floating-point arithmetic under scale factor ∆. If
∥z∥∞ ≤ 249/∆, then ∥m̂∥can∞ ≤ ∆ ∥z∥∞ + 3n

2
√
2
.

Costache et al. 2023 show ∥m∥∞ ≤ ∆ ∥z∥∞ + 1
2 .
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Precision Loss From Encryption Error

Let h be the hamming weight of s. For each operation, suppose the input
errors are bounded by E and the messages are bounded by t/2 (in the
canonical embedding norm).

Operation Bound from [2] Our Bound

Encryption σ
√

n2

2 + hn + n · HC(α, n) nh

Add 2E 2E
Multiply Et + E 2 Et + E 2

Relinearize E +
√
n · ηks · HC(α, n) E + n3

24 + n√
2
h

Rescale ∆−1E +
√

n
12(h + 1) · HC(α, n) ∆−1E + n

2
√
2
(h + 2)

Table: Comparison of Canonical Embedding Bounds
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We repeatedly predict a worst-case accuracy of about 10 to 13 bits of
precision.

This is about what we should expect. The predictions and observed
accuracy in [2] give 20 to 26 bits of precision for similar multiplicative
depths.

This is due to the difference of a square root factor the earlier encryption
error bounds.
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