
Ball-collision Decoding Analysis

Linear Codes in the McEliece Cryptosystem

Kyle Yates

MATH 499 Fall 2019∗

Abstract

Modern cryptography relies on computationally difficult problems. With the anticipated
advancements of quantum computing in the near future, many cryptosystems are in jeopardy
of being compromised. The McEliece cryptosystem, although rarely used in practice, is
resistant to attacks even with the development of quantum computers.

The McEliece Cryptosystem tasks an adversary with the difficult decoding of a seemingly
random long linear code. In 2011, Daniel J. Bernstein, Tanja Lange, and Christiane Peters
published Smaller decoding exponents: ball-collision decoding, showing a speedup
from previous decoding algorithms [1].

This project focuses on decoding long linear codes via the ball-collision decoding algorithm.
We will implement the algorithm, test the algorithm on a variety of linear codes, and discuss
feasibility of ball-collision decoding in breaking the McEliece Cryptosystem.

1 Introduction

1.1 Decoding Long Linear Codes

For specific structures of linear codes, efficient decoding algorithms are known. However, with
our current knowledge this is not true for a general linear code. In terms of computational
difficulty, syndrome decoding is NP-complete [2]. With a code of substantial enough length,
even the best decoding algorithms become computationally infeasible.

1.2 The McEliece Cryptosystem

In 1978, Robert McEliece developed a cryptosystem based on the hardness of decoding long
linear codes [3]. A long linear code with an efficient decoding algorithm is chosen (often a
Goppa code), and is disguised via multiplication by a random non-singular matrix and a
random permutation matrix. Messages are encrypted with this masked code. If this code is
intercepted during transmission, the interceptor will not be able to distinguish the code from
a random linear code and generally will not be able to efficiently decode the message.
Without access to the private key, the interceptor will also not be able to convert the code
into the original code for which an efficient decoding algorithm is known. The process for
generating a matched public and private key is outlined below [4]

1. Choose a k × n generator matrix G for a (n, k)-linear code with error correcting
capability t and an efficient known decoding algorithm.

2. Choose a random k × k invertible matrix S.

∗Senior research project, supervised by Dr. J. Carmelo Interlando

3. Choose a random n× n permutation matrix P .

4. Calculate Ĝ = SGP .

5. The public key is (Ĝ, t). The private key is (S,G, P).

The intended receiver of the message can now generate a public and private key pair. Users
can encrypt messages with the public key and send the encrypted message to the receiver.
The receiver can then decrypt the message with the private key. The encryption and
decryption process is outlined below[4].

Encryption

1. Obtain the public key (Ĝ, t)

2. Represent the message m as a binary string of length k

3. Choose a random binary error vector e of length n having wt(e) within the error
correcting capability t

4. Compute the ciphertext c = mĜ+ e

5. Send the encrypted message c to the intended receiver

Decryption

1. Compute ĉ = cP−1

2. Use an efficient decoding algorithm to decode ĉ to m̂

3. Compute m = m̂S−1, the original message

1.3 The Ball-collision Decoding Algorithm

If a third-party adversary were to intercept a message encrypted with the McEliece
cryptosystem during transmission, they would be tasked with decoding a seemingly random
linear code. Ball-collision decoding can be used in attempting to decode this linear code [1].
The algorithm is outlined below. Slight adjustments in notation from the original paper have
been made in this report, which will be discussed further in section 2.3.

CONSTANTS: n, k, w ∈ Z with 0 ≤ w ≤ n and 0 ≤ k ≤ n
PARAMETERS: p1, p2, q1, q2, ℓ1, ℓ2 ∈ Z with
0 ≤ k1, 0 ≤ k2, k1 + k2 = k, 0 ≤ p1 ≤ k1, 0 ≤ p2 ≤ k2, 0 ≤ q1 ≤ ℓ1, 0 ≤ q2 ≤ ℓ2, and
0 ≤ w − p1 − p2 − q1 − q2 ≤ n− k − ℓ1 − ℓ2
INPUTS: Parity check matrix H ∈ F(n−k)×n

2 and syndrome s ∈ Fn−k
2

OUTPUT: Zero or more vectors e ∈ Fn
2 such that He = s

1. Choose a uniform random information set Z

2. Choose a uniform random partition of Z into sizes k1 and k2

3. Choose a uniform random partition of {1, 2, ..., n} \ Z into parts of sizes ℓ1, ℓ2 and
n− k − ℓ1 − ℓ2

4. Find an invertible U ∈ F(n−k)×(n−k)
2 such that the columns of UH indexed by

{1, 2, ..., n} \ Z form an identity matrix of size (n− k)× (n− k). Write the columns of

UH indexed by Z as

(
A1

A2

)
with A1 ∈ F(ℓ1+ℓ2)×k

2 and A2 ∈ F(n−k−ℓ1−ℓ2)×k
2

5. Write Us as

(
s1
s2

)
with s1 ∈ Fℓ1+ℓ2

2 and s2 ∈ Fn−k−ℓ1−ℓ2
2

6. Compute the set S containing all possible triples (A1x0 + x1, x0, x1) where
x0 ∈ Fk1

2 ||{0}k2 , wt(x0) = p1, x1 ∈ Fℓ1
2 ||{0}ℓ2 , and wt(x1) = q1

7. Compute the set T containing all possible triples (A1y0 + y1 + s1, y0, y1) where
y0 ∈ {0}k1 ||Fk2

2 , wt(y0) = p2, y1 ∈ {0}ℓ1 ||Fℓ2
2 , and wt(y1) = q2

8. For each (v, x0, x1) in S:

For each y0, y1 with (v, y0, y1) ∈ T :

If wt(A2(x0 + y0) + s2) = w − p1 − p2 − q1 − q2:

Output the vector e ∈ Fn
2 with x0 + y0 as the Z indexed components, and

(x1 + y1||A2(x0 + y0) + s2) as the remaining components.

1.4 Notation

Notation will be introduced in sections to which it is relevant, but is also listed here for
convenience. The following is a list of mathematical notation used in this paper.

Z denotes the set of integers

∅ denotes the empty set

|S| denotes the cardinality of a set S

F2 denotes a finite field of order 2

GF(2m) denotes a finite field of order 2m

An [n, k] code is a code of length n and dimension k

An [n, k, d] code is a code of length n, dimension k, and minimum distance d

t denotes the error correcting capability of a code, equivalent to
⌊
d−1
2

⌋
e denotes an error vector

s denotes a syndrome of a code

G denotes the generator matrix of a code

H denotes the parity-check matrix of a code

Z denotes an information set of a code

v ∈ Fa
2 denotes a binary vector v of length a

wt(v) denotes the Hamming weight of a vector v

v||w denotes concatenation of vectors v and w

{0}a denotes the zero vector of length a

M ∈ Fa×b
2 denotes a binary matrix M of length a and dimension b

2 Implementation of the Ball-collision Decoding Algorithm

The primary goal of this project is to implement and test performance of the ball-collision
decoding algorithm. This section will discuss the implementation of the ball-collision decoding
algorithm.

2.1 Magma Computational Algebra

Magma Computational Algebra is a mathematical software geared towards algebraic topics.
This includes linear codes. Implementation of the ball-collision decoding algorithm in this
report is assumed in Magma.

Several Magma-specific functions are utilized in this implementation of the algorithm. These
includes functions for finding parity-check matrices, checking linear independence, finding
subsets, and calculating Hamming weights.

2.2 Code

In this section, we will discuss the Magma code for the ball-collision decoding algorithm. We
will move through the algorithm one step at a time, discussing the code for each step if
necessary. The more difficult tasks in steps 6 to 8 of matching matrix dimensions and sets S
and T will be discussed separately in sections 2.3 and 2.4. Note that steps 6 and 7 of the
original algorithm are switched here, but the end result is exactly the same.

A full version of the code without intermediate steps or explanations can be found in the
Appendix.

PARAMETER SETUP:
time for x:=1 to 1 do

n:= ;

k:= ;

w:= ;

k1:= ;

k2:=k-k1;

l1:= ;

l2:= ;

p1:= ;

p2:= ;

q1:= ;

q2:= ;

H:= ;

s:= ;

This is the basic parameter setup. The beginning for loop is to provide an easily accessible
break point if the algorithm succeeds, as well as the opportunity to time the algorithm.

1. Choose a uniform random information set Z

H:=Transpose(H);

Z:={};
Zc:={};
Zcv:={};
RS:={1..n};

repeat

ran:=Random(RS);

Zct:=Zcv join {H[ran]};
if IsIndependent(Zct) eq true then

Zcv:=Zct;

Zc:=Zc join {ran};
end if;

RS:=RS diff {ran};
until #Zc eq n-k;

Z:={1..n} diff Zc;

H:=Transpose(H);

To build a random information set Z, we first start with a set Z∗ = ∅ and choose a
random column vector w of H (or a random row vector w of HT). If w is linearly
independent to every element in Z∗, set Z∗ = Z∗ ∪ {w}. If not, we discard w. We repeat
this process until |Z∗| = n− k. Z is the set containing column indices of all the
remaining vectors of the code which are not in Z∗.

2. Choose a uniform random partition of Z into sizes k1 and k2

Fk1:=RandomSubset(Z, k1);

Fk2:=Z diff Fk1;

3. Choose a uniform random partition of {1, 2, ..., n} \ Z into parts of sizes ℓ1, ℓ2 and
n− k − ℓ1 − ℓ2

Fl1:=RandomSubset(Zc, l1);

Zi:= Zc diff Fl1;

Fl2:=RandomSubset(Zi, l2);

Fnkl1l2:= Zi diff Fl2;

4. Find an invertible U ∈ F(n−k)×(n−k)
2 such that the columns of UH indexed by

{1, 2, ..., n} \ Z form an identity matrix of size (n− k)× (n− k). Write the columns of

UH indexed by Z as

(
A1

A2

)
with A1 ∈ F(ℓ1+ℓ2)×k

2 and A2 ∈ F(n−k−ℓ1−ℓ2)×k
2

Z:=Sort(SetToSequence(Z));

Zc:=Sort(SetToSequence(Zc));

V:=Matrix(GF(2),n-k,n-k,[]);

for i:=1 to n-k do

for j:=1 to n-k do

V[i,j]:=H[i,Zc[j]];

end for;

end for;

U:=V-̂1;

UH:=Transpose(U*H);

A:=Matrix(GF(2),k,n-k,[]);

for i:=1 to #Z do

A[i]:=UH[Z[i]];

end for;

A:=Transpose(A);

A1:=ExtractBlock(A, 1, 1, l1+l2, k);

A2:=ExtractBlock(A, l1+l2+1, 1,n-k-l1-l2, k);

To construct U , we take all the columns of H indexed by {1, ..., n} \ Z. The inverse of
this is U . We then take the columns of UH indexed by Z as A, and then extract A1 and
A2 accordingly.

5. Write Us as

(
s1
s2

)
with s1 ∈ Fℓ1+ℓ2

2 and s2 ∈ Fn−k−ℓ1−ℓ2
2

Us:=U*s;

s1:=ExtractBlock(Us, 1, 1, l1+l2, 1);

s2:=ExtractBlock(Us, l1+l2+1, 1,n-k-l1-l2, 1);

6. Compute the set T containing all possible triples (A1y0 + y1 + s1, y0, y1) where
y0 ∈ {0}k1 ||Fk2

2 , wt(y0) = p2, y1 ∈ {0}ℓ1 ||Fℓ2
2 , and wt(y1) = q2

T:=[];

ct:=1;

T1:=Subsets({1..k2}, p2);

T2:=Subsets({1..l2}, q2);

for a in T1 do

y0:=Matrix(GF(2),k,1,[]);

if #T1 ne 0 then

for b in a do

y0[k1+b,1]:=1;

end for;

end if;

for c in T2 do

y1:=Matrix(GF(2),l1+l2,1,[]);

if #T2 ne 0 then

for d in c do

y1[l1+d,1]:=1;

end for;

end if;

v:=A1*y0+y1+s1;

if #T eq 0 then

Append(∼T,<v,{<y0,y1>}>);
else

for h:=1 to ct do

if T[ct][1] eq v then

T[ct][2]:=T[ct][2] join {<y0,y1>};
break h;

else

Append(∼T,<v,{<y0,y1>}>);
ct:=ct+1;

end if;

end for;

end if;

end for;

end for;

7. Compute the set S containing all possible triples (A1x0 + x1, x0, x1) where
x0 ∈ Fk1

2 ||{0}k2 , wt(x0) = p1, x1 ∈ Fℓ1
2 ||{0}ℓ2 , and wt(x1) = q1

S:=[];

ct:=1;

S1:=Subsets({1..k1}, p1);

S2:=Subsets({1..l1}, q1);

for a in S1 do

x0:=Matrix(GF(2),k,1,[]);

if #S1 ne 0 then

for b in a do

x0[b,1]:=1;

end for;

end if;

for c in S2 do

x1:=Matrix(GF(2),l1+l2,1,[]);

if #S2 ne 0 then

for d in c do

x1[d,1]:=1;

end for;

end if;

v:=A1*x0+x1;

8. For each (v, x0, x1) in S:

For each y0, y1 with (v, y0, y1) ∈ T :

If wt(A2(x0 + y0) + s2) = w − p1 − p2 − q1 − q2:

Output the vector e ∈ Fn
2 with x0 + y0 as the Z indexed components, and

(x1 + y1||A2(x0 + y0) + s2) as the remaining components.

for r:=1 to #T do

if T[r][1] eq v then

for dl in T[r][2] do

cl:=Vector(A2*(x0+dl[1])+s2);

if Weight(cl) eq w-p1-p2-q1-q2 then

t1:=x0+dl[1];

t2:=x1+dl[2];

t3:=A2*(x0+dl[1])+s2;

R:=Matrix(GF(2),n,1,[]);

for i in Z do

R[i]:=t1[Index(Z, i)];

end for;

for i:=1 to l1+l2 do

R[Zc[i]]:=t2[i];

end for;

for i:=1 to n-k-l1-l2 do

R[Zc[i+l1+l2]]:=t3[i];

end for;

print Vector(R);

break x;

end if;

end for;

end if;

end for;

end for;

end for;

end for;

The algorithm will output every vector e fulfilling He = s if p1, p2, q1, and q2 are chosen
correctly. Since McEliece encryption requires that wt(e) is within the error-correcting
capability t, e will be unique. Thus, we can halt the algorithm once e is found, as no further
solutions will exist.

2.3 Dimensions

One of the trickier parts to implementing the algorithm is ensuring dimensions of matrices and
vectors match. This is apparent in steps 6 to 8 of the algorithm. Constructing sets S and T

will be discussed from an efficiency perspective in the next section. However, the computations
needed for triples of these sets are can be prone to discrepancies in dimensions matching.

In [1], the following notations are used for defining some specific matrices and vectors

A1 ∈ F(ℓ1+ℓ2)×k
2 , A2 ∈ F(n−k−ℓ1−ℓ2)×k

2

s1 ∈ Fℓ1+ℓ2
2 , s2 ∈ Fn−k−ℓ1−ℓ2

2

x0 ∈ Fk1
2 , x1 ∈ Fℓ1

2 , y0 ∈ Fk2
2 , y1 ∈ Fℓ2

2

The algorithm constructs triples in S via (A1y0 + y1 + s1, y0, y1). Problems can arise in this
computation depending on how we interpret notation. If we take x0 ∈ Fk1

2 as a vector of
length k1, then the multiplication A1x0 is not always defined. A1 is a ℓ1 + ℓ2 by k matrix, so
A1x0 is only valid in the special case k1 = k. If instead we take x0 ∈ Fk1

2 as a vector of length
k with variations in the first k1 digits and 0’s in the remaining k2 digits, then A1x0 is valid.
The result a vector of length ℓ1 + ℓ2. For the addition A1x0 + x1 to make sense, x1 ∈ Fℓ1

2 must
then be of length ℓ1 + ℓ2. x1 will have variations in the first ℓ1 digits and 0’s in the remaining
ℓ2 digits by the same logic as x0’s structure.

Similarly, the algorithm constructs triples in T via (A1y0 + y1 + s1, y0, y1). y0 ∈ Fk2
2 must be

of length k for the multiplication A1y0 to be valid. Take y0 ∈ Fk2
2 as a vector of length k with

0’s in the first k1 digits and variations in the remaining k2 digits. A1y0 then results in a vector
of length ℓ1 + ℓ2. For A1y0 + y1 + s1 to be valid, take y1 ∈ Fℓ2

2 as a vector of length ℓ1 + ℓ2
with 0’s in the first ℓ1 digits and variations in the remaining ℓ2 digits.

This interpretation for the dimensions of these various subspaces is based on an earlier version
of the ball-collision decoding paper1. This earlier version uses the notation x0 ∈ Fk1

2 × {0}k2
for these types of elements. This report uses x0 ∈ Fk1

2 ||{0}k2 as the notation for these types of
elements, with || denoting concatenation of two vectors.

2.4 Sets S and T

The most operationally taxing portion of the algorithm is constructing and comparing sets S
and T . For constructing S, we need to compute every possible vector x0 ∈ Fk1

2 ||{0}k2 of
weight p1, every possible vector x1 ∈ Fℓ1

2 ||{0}ℓ2 of weight q1, and the triple (A1x0 + x1, x0, x1)
for the combination of any x0 and x1. Similarly, for constructing T , we need to compute every
possible vector y0 ∈ {0}k1 ||Fk2

2 of weight p2, every possible vector y1 ∈ {0}ℓ1 ||Fℓ2
2 of weight q2,

and the triple (A1y0 + y1 + s1, y0, y1) for the combination of any y0 and y1. Once our sets are
constructed, we must compare the first element of each triple in S with the first element of
each triple in T looking for matches.

As specified in [1], the sizes of S and T are
(
k1
p1

)(
ℓ1
q1

)
and

(
k2
p2

)(
ℓ2
q2

)
respectively. With big

parameters, the sizes of S and T explode. Storing these sets outright will eventually be
infeasible. To achieve the best runtime for the algorithm available to us, we need to minimize
storage of these sets. Rather than computing and storing every triple (v, x0, x1) and (v, y0, y1)
for both S and T , we will instead store only one set. Then, we will calculate terms as needed,
and discard them if they do not fulfill the required conditions.

1https://cr.yp.to/codes/ballcoll-20101117.pdf

Constructing T

We construct T as follows. Let T = ∅. ∀y0 ∈ {0}k1 ||Fk2
2 , y1 ∈ {0}ℓ1 ||Fℓ2

2 do

1. Calculate v = A1y0 + y1 + s1.

2. Set T (v) = T (v) ∪ {(y0, y1)}. If T (v) has not yet been defined, set T (v) = {(y0, y1)}.

3. If T (v) ⊈ T , set T = T ∪ {T (v)}.

T will then be stored in the following form

T = {T (v1), T (v2), ..., T (vm)}

Where T (v1), T (v2), ..., T (vm) are subsets of T such that

T (v) = {(y0, y1) : Ay0 + y1 + s1 = v}

Constructing and Checking S

We construct S and check it against T as follows. ∀x0 ∈ Fk1
2 ||{0}k2 , x1 ∈ Fℓ1

2 ||{0}ℓ2 do

1. Calculate v = A1x0 + x1

2. If T (v) ⊈ T , discard this pair x0, x1 and go back to step 1. Else, continue.

3. ∀(y0, y1) ∈ T (v), check if wt(A2(x0 + y0) + s2) = w − p1 − p2 − q1 − q2. If true, output
e ∈ Fn

2 with x0 + y0 as the Z indexed components, and (x1 + y1||A2(x0 + y0) + s2) as the
remaining components.

Once the vector e is found, no more computation is necessary and we can end the program.
By discarding x0 and x1 as we go and storing only unique v’s in T , there is less computation
and storage that the algorithm must perform.

3 The Golay Code

Now that the ball-collision decoding algorithm has been implemented, we can begin to test it.
The Golay Code is one of the few known non-trivial perfect codes, meaning that it achieves
the Hamming bound [5]. The [23,12,7] code G23 is defined as follows

G23 =

1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1

The code can be extended by a parity check bit to the nearly perfect [24,12,8] code G24.
However, we will only look at G23.

G23 is a well-known code, making it a good starting point for our study of the ball-collision
decoding algorithm.

3.1 Hamming Bound

Let C be an [n, k, d] code with error correcting capability t =
⌊
d−1
2

⌋
. The Hamming bound is

an upper bound for the number of codewords in C, namely [5]

|C| ≤ 2n∑t
i=0

(
n
i

)
A code C is perfect is it attains the Hamming bound [5]

|C| = 2n∑t
i=0

(
n
i

)
G23 is a [23, 12, 7] code with t = 3. It achieves the Hamming bound and is therefore a perfect
code, as

|G23| = 212 =
223(

23
0

)
+
(
23
1

)
+
(
23
2

)
+
(
23
3

)
3.2 Ball-collision Decoding on the Golay Code

The small size of the Golay Code does not provide for much insight regarding the efficiency of
ball-collision decoding, as any calculations in the algorithm will be in a computationally
trivial range. The Golay code will rather be useful in studying the mechanics of ball-collision
decoding and analyzing success probabilities.

Example - Algorithm Mechanics

Let Z be the following information set of the Golay code

Z = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Consider the error vector e with wt(e) = 3

e = (0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0)

And the corresponding partitions of e for parameter values k1 = k2 = 6, ℓ1 = ℓ2 = 3

e = ([0 0 0 1 1 0]
k1

[0 0 0 0 0 0]
k2︸ ︷︷ ︸

Z

[0 0 0]
ℓ1

[0 0 0]
ℓ2

[0 1 0 0 0]
n−k−ℓ1ℓ2︸ ︷︷ ︸

{1,2,..,n}\Z

)

Because wt(e) ≤ t, there is only one e satisfying He = s. e has a weight of 2 in the partition
corresponding with k1, a weight of 0 in the partitions corresponding with k2, ℓ1, ℓ2, and a
weight of 1 in the partition corresponding with n− k − ℓ1 − ℓ2. The algorithm searches for an
error vector of weights p1, p2, q1, q2 in these respective partitions. Hence, the algorithm will
succeed when p1 = 2, p2 = q1 = q2 = 0, and will fail otherwise.

Success Probabilities

The success probability b for any parameters of ball-collision decoding is given via the
counting argument [1]

b =

(
n

w

)−1(n− k − ℓ1 − ℓ2
w − p1 − p2 − q1 − q2

)(
k1
p1

)(
k2
p2

)(
ℓ1
q1

)(
ℓ2
q2

)

The success probability for the Golay code is

b =

(
23

w

)−1(11− ℓ1 − ℓ2
w − p1 − p2 − q1 − q2

)(
k1
p1

)(
k2
p2

)(
ℓ1
q1

)(
ℓ2
q2

)

For example purposes, consider the parameter values k1 = 8, k2 = 4, ℓ1 = 2, ℓ2 = 3. We will
search for the same weight distribution in our partitions as outlined in the previous example,
with p1 = 2, p2 = q1 = q2 = 0. For a random vector e with wt(e) = w = 3, our success
probability is

b =

(
23

3

)−1(6
1

)(
8

2

)(
4

0

)(
2

0

)(
3

0

)
=

(
23

3

)−1(6
1

)(
8

2

)
≈ 9.5%

We will now test the algorithm with these outlined parameters in an attempt to match the
theoretical success probability. Consider multiple iterations of ball-collision decoding, each
with a random error vector e with wt(e) = 3. Results are as follows:

Iterations Successful attempts Success rate Runtime (seconds)

1 0 0% 0.000

101 1 10% 0.000

102 9 9% 0.063

103 97 9.7% 0.516

104 930 9.3% 5.031

105 9486 9.49% 55.422

This matches the desired success probability after a large amount of iterations.

4 Long Linear Codes

The Golay code serves as a good starting point for understanding the mechanics and success
probability of ball-collision decoding. To evaluate practicality and efficiency, we must move to
bigger codes.

The codes introduced in this section are general linear codes, and thus do not have efficient
decoding algorithms. They are not usable in the McEliece Cryptosystem. For an adversary
trying to break the McEliece cryptosystem however, the intercepted codes will seem to be
codes such as these.

4.1 Ball-collision Decoding on Random Linear Codes

Let’s look at some random linear codes. We will look at a [100, 50] linear code. This code is
too large to write explicity in this paper. The randomness also does not allow us to write it
using a generating polynomial such as Goppa codes do. We will need to generate this code
using functions in Magma.

Generate a random code C and calculate the minimum distance via

C:=RandomLinearCode(GF(2), 100, 50);

d:=MinimumDistance(C);

In our case d = 13 and t = 6. We will test the algorithm’s performance on this random linear
code.

Stern’s algorithm

Consider the following parameter values

k1 = k2 = 25, ℓ1 = ℓ2 = 4

p1 = p2 = q1 = q2 = 0

Stern’s algorithm coincides with special case of ball-collision decoding [1]. Namely,
p1 = p2, q1 = q2 = 0, k1 ≈ k2. The above parameter values give us Stern’s algorithm. Letting
wt(e) = w = t = 6, the success probability for one iteration of ball-collision decoding is

b =

(
100

6

)−1(42
6

)(
25

0

)(
25

0

)(
4

0

)(
4

0

)
≈ 0.44%

The most computationally intensive portion of the algorithm is constructing and comparing
sets S and T . Since p1 = p2 = q1 = q2 = 0, |S| = |T | = 0. This means the algorithm will run
very quickly. The price we pay is having a small success probability. Consider multiple
iterations of ball-collision decoding with these parameters, each with a random error vector e.
Results are as follow:

Iterations Successful attempts Success rate Runtime (seconds)

1 0 0% 0.000

101 0 0% 0.031

102 1 1% 0.266

103 4 0.4% 2.688

104 46 0.46% 27.703

105 454 0.45% 285.141

The successful attempts and runtimes expand linearly with the number of iterations. Consider
now the same table with values p1 = p2 = 1, q1 = q2 = 0. Results are as follows:

Iterations Successful attempts Success rate Runtime (seconds)

1 0 0% 0.000

101 1 10% 0.047

102 11 11% 0.422

103 159 15.9% 4.063

104 1575 15.8% 64.516

With the values of p1 and p2 being nonzero, we see a tradeoff between success rate and
runtime. Though this is true in our case, a larger value of p1 and p2 will certainly not always
infer a higher success rate.

Ball-collision Decoding vs. Stern’s Algorithm

With our desire to minimize computational strain, the best parameter choices are usually
comparable to the requirements of Stern’s algorithm. As the values of ℓ1, ℓ2, q1, q2 inflate so
does the size of set T . Parameter values for attacks on high-security systems coincide with
small values of ℓ1, ℓ2, q1, q2. Stern’s algorithm requires q1 = q2 = 0, and although this at times
is the best known attack on a system, non-zero values of these parameters can be of slight
advantage (such as the hypothetical attack on a 256-bit security system outlined in [1]).

5 Goppa Codes

Goppa codes are the standard codes used in the McEliece Cryptosystem. The way in which
Goppa codes are structured provide bounds for both the dimension k and minimum distance
d. With a well-chosen Goppa polynomial, both k and d can be a reasonable and sufficient size.
Efficient decoding algorithms are known for Goppa codes as well, making them the perfect
candidate for the McEliece Cryptosystem. This section will discuss the basics of constructing
Goppa codes and the performance of the ball-collision decoding algorithm on Goppa codes of
a substantial size. We will only consider binary Goppa codes.

5.1 Constructing Goppa Codes

Define G(z) as the Goppa polynomial. This will be the polynomial that will generate our
code. Let m ∈ Z be fixed. Then, G(z) is a polynomial of degree r with coefficients from

GF(2m). Let L = {α1, · · ·αn} be a subset of GF(2m) such that ∀αi ∈ L,G(αi) ̸= 0. With any
vector a = (a1, · · · an) over GF(2), we have the rational function Ra(z) as

Ra(z) =
n∑

i=1

ai
z − αi

The Goppa code Γ(L,G) consists of all vectors a such that Ra(z) = 0 mod G(z) [6].

Goppa codes are a subclass of alternant codes. Thus, they have the property that for a Goppa
code Γ(L,G) with deg(G(z)) = r, the minimum distance d has a lower bound [6]

d ≥ r + 1

and the dimension k has an upper and lower bound

n−mr ≤ k ≤ n− r

5.2 Efficient Decoding

As Goppa codes are a subclass of alternant codes, efficient decoding algorithms do exist.
Efficient decoding algorithms for these codes are not discussed in this paper, but they are
available in other resources [6].

5.3 Ball-collision decoding on Goppa Codes

Now we will test the performance of the ball-collision decoding algorithm on some big Goppa
codes. The runtime of the algorithm will obviously differ depending on the machine it is run
on and the way in which the algorithm is implemented. However, it still gives us a good idea
of what the algorithm is capable of and how it will scale depending on parameter values and
the amount of errors being corrected.

Our goal here will first be to analyze the ball-collision decoding algorithm’s performance on
correcting few errors, and then progress to see how many errors we are able to correct
assuming a reasonable and non-trivial distribution of errors.

Example 5.3.1. (Triple Random Error Correction)
Consider the parameter values for the Goppa code of length n = 29 − 1 = 511 generated by
G(z) = z31 + αz2 + α

k1 = k2 = 116, ℓ1 = ℓ2 = 60

p1 = 3, p2 = q1 = q2 = 0

Consider an error vector e of length n = 511 with 3 random errors in the first k1 digits
indexed by an information set Z. With these parameter values, the algorithm will always
succeed. We run the algorithm 100 times, each with a different random error vector e.
Runtime results are plotted below.

Since the algorithm is done as soon as the error vector is found, we have a variety of
completion times. The average runtime is ≈ 4.6585 seconds.

Now, lets look at an error vector e of length n = 511 with 3 random errors in any digits.
Consider the same code and the same parameters. The errors are not isolated to the first k1
digits indexed by Z, so the algorithm is not guaranteed to succeed. The success probability
is[1] (

n

w

)−1(n− k − ℓ1 − ℓ2
w − p1 − p2 − q1 − q2

)(
k1
p1

)(
k2
p2

)(
ℓ1
q1

)(
ℓ2
q2

)

=

(
511

3

)−1(159
0

)(
116

3

)(
116

0

)(
60

0

)(
60

0

)
=

253460

22108415
≈ .0114

So, the algorithm has a ≈ 1% chance of succeeding. Again, we run the algorithm 100 times,
each with a different random error vector e. Runtime results are plotted below.

The average runtime for the above plot is ≈ 9.2221 seconds. As we can see, the runtime is
much more consistent when the algorithm does not succeed, as it likely has to compute a
similar amount of iterations no matter the error vector. The discrepancy around position 21
in the above plot with a runtime of ≈ 7.6 seconds is likely an error vector for which the
algorithm succeeded. This matches the success probability we outlined above as well, since
the algorithm succeeded for 1 out of 100 of our random error vectors.

Example 5.3.2. (Triple Burst Error Correction)
When all the errors in an error vector are contained within a small chunk of bits, it is
considered a burst error [5]. For instance, an error vector

(0 0 0 |1 1 0 1
burst

| 0 0 0)

would have a burst length of 4, as all errors happen within 4 positions of each other. For
simplicity sake, we will only be considering bursts in which the burst length is exactly equal
to the number of errors (ie, there are no 0’s within our burst chunk).

Consider the same Goppa code and parameters as our previous example; the Goppa code of
length n = 29 − 1 = 511 generated by G(z) = z31 + αz2 + α and parameter values

k1 = k2 = 116, ℓ1 = ℓ2 = 60

p1 = 3, p3 = q1 = q2 = 0

Consider an error vector e with a burst of length 3 containing 3 errors. The position of the
errors will be a, a+ 1, and a+ 2 from a = 1 to a = 110. So, the error vectors we are
introducing will look like

(1 1 1 0 0 0 · · ·)

(0 1 1 1 0 0 · · ·)

(0 0 1 1 1 0 · · ·)

(0 0 0 1 1 1 · · ·)

and so on. All errors are in the first k1 digits indexed by Z, and the algorithm will always
succeed. We run the algorithm for the varying values of a and plot the runtime results below.

As we can see, there seems to be a fairly linear progression with our burst position. With our
implementation of the algorithm, error vectors with all the errors concentrated in the first bits
of the vector seem to be found the quickest.

Capacities of ball-collision decoding

We’ll now move to bigger error correction. Consider the Goppa code of length n = 29 − 1
generated by G(z) = z34 + αz7 + α with dimension k = 205 and error correcting capability
t ≥ 17. Set the following parameters

k1 = 103, k2 = 102, ℓ1 = ℓ2 = 15

Our corresponding partitions then make up the following percentages of the code in terms of
size

k1 ≈ k2 ≈ 20%

ℓ1 = ℓ2 ≈ 3%

n− k − ℓ1 − ℓ2 ≈ 54%

We’ll use this in finding the best success probabilities for a given distribution of errors.

10 errors

Consider the values

p1 = p2 = 2, q1 = q2 = 0

and a random error vector of weight wt(e) = 10 = w. The success probability for a single
iteration of ball-collision decoding is(

511

10

)−1(276
6

)(
103

2

)(
102

2

)(
15

0

)(
15

0

)
≈ 5.13%

Based on our values, we are assuming the position of our errors roughly matches the
percentages of each partition. In other words, 20% of our errors are in the partition of k1,
20% of our errors are in the partition of k2, and 60% of our errors are in the partition of
n− k − ℓ1 − ℓ2. This means our success probability for a single iteration of ball-collision
decoding will be nearly maximized.

In our 20 simulated attempts, the algorithm succeeded exactly once, matching our success
probability with a runtime of 46.000 seconds.

Cherry-picked Errors

For larger error corrections, we will be introducing error vectors with a structure that matches
our parameter values p1, p2, q1, q2, assuring that the algorithm will always succeed in finding
the error vector. We will still discuss the success probability as necessary, but it is more
advantageous for us to look at only the cases that will succeed.

Our errors will be picked in a roughly similar distribution to our distribution of partitions,
with slightly more errors in the n− k − ℓ1 − ℓ2 partition. This will slightly lessen the success
probability, but will drastically lessen runtime. All further examples will use the code
generated by the Goppa polynomial n = 29 − 1 = 511 generated by G(z) = z31 + αz2 + α and
parameter values

k1 = k2 = 116, ℓ1 = ℓ2 = 60

11 Errors

Consider an error vector with 11 errors. Consider 2 errors in the partition corresponding to
k1, 2 errors in the partition corresponding to k2, and 7 errors in the partition corresponding to
n− k − ℓ1 − ℓ2. The success probability is

(
511

11

)−1(276
7

)(
103

2

)(
102

2

)(
15

0

)(
15

0

)
≈ 4.3%

Run the algorithm with p1 = p2 = 2, q1 = q2 = 0.

Successful Decoding Time: 50.594 seconds

12 Errors

Consider an error vector with 11 errors. Consider 2 errors in the partition corresponding to
k1, 2 errors in the partition corresponding to k2, and 8 errors in the partition corresponding to
n− k − ℓ1 − ℓ2. The success probability is(

511

12

)−1(276
8

)(
103

2

)(
102

2

)(
15

0

)(
15

0

)
≈ 3.5%

Run the algorithm with p1 = p2 = 2, q1 = q2 = 0.

Successful Decoding Time: 45.844 seconds

13 Errors

Consider an error vector with 11 errors. Consider 3 errors in the partition corresponding to
k1, 2 errors in the partition corresponding to k2, and 8 errors in the partition corresponding to
n− k − ℓ1 − ℓ2. The success probability is(

511

13

)−1(276
8

)(
103

3

)(
102

2

)(
15

0

)(
15

0

)
≈ 3.1%

Run the algorithm with p1 = 3, p2 = 2, q1 = q2 = 0.

Successful Decoding Time: 309.938 seconds

14 Errors

Consider an error vector with 14 errors. Consider 3 errors in the partition corresponding to
k1, 2 errors in the partition corresponding to k2, and 9 errors in the partition corresponding to
n− k − ℓ1 − ℓ2. The success probability is(

511

14

)−1(276
9

)(
103

3

)(
102

2

)(
15

0

)(
15

0

)
≈ 2.6%

Run the algorithm with p1 = 3, p2 = 2, q1 = q2 = 0.

Successful Decoding Time: 433.547 seconds

15 Errors

Consider an error vector with 15 errors. Consider 3 errors in the partition corresponding to
k1, 2 errors in the partition corresponding to k2, and 10 errors in the partition corresponding
to n− k − ℓ1 − ℓ2. The success probability is(

511

15

)−1(276
10

)(
103

3

)(
102

2

)(
15

0

)(
15

0

)
≈ 2.1%

Run the algorithm with p1 = 3, p2 = 2, q1 = q2 = 0.

Successful Decoding Time: 179.578 seconds

6 Conclusions

In this paper, we implemented the ball-collision decoding algorithm and successfully corrected
15 errors in a Goppa code of length 29 − 1 in reasonable time, coming within 2 errors of the
lower bound for this code’s error correcting capability. This is far from feasible in breaking
the McEliece scheme. However, we can still justify recommended parameter choices of Goppa
codes in the McEliece Cryptosystem from the data collected.

6.1 Iteration Cost

The cost of a single iteration of ball-collision decoding is [1]

1

2
(n− k)2(n+ k) + (ℓ1 + ℓ2)

(
p1∑
i=1

((
k1
i

))
+

p2∑
i=1

((
k2
i

))
− k1

)

+min{1, q1}
(
k1
p1

) q1∑
i=1

((
ℓ1
i

))
+min{1, q2}

(
k2
p2

) q2∑
i=1

((
ℓ2
i

))

+2(w − p1 − p2 − q1 − q2 + 1)(p1 + p2)

(
k1
p1

)(
k2
p2

)(
ℓ1
q1

)(
ℓ2
q1

)
2−ℓ1−ℓ2

In the case of our 15 error correction, this cost is

1

2
(306)2(716) + (30)

(
3∑

i=1

((
103

i

))
+

2∑
i=1

((
102

i

))
− 103

)

+110

(
103

3

)(
102

2

)(
15

0

)(
15

0

)
= 100244687508 ≈ 1011

Since the algorithm ends as soon as the error vector is found, this is the upper bound for the
number of operations for the given parameters.

6.2 McEliece Parameters

Our analysis of ball-collision decoding, though far from comprehensive, aids us in choosing
secure parameters for McEliece. Bernstein, Lange, and Peters recommend codes with
parameters [3178,2384,68] for 128-bit security and codes with parameters [6944,5208,136] for
256-bit security [1].

Goppa codes opt for a tradeoff of minimum distance and dimension, with higher degree
Goppa polynomials guaranteeing a larger minimum distance with the consequence of a lower
dimension and vice versa, as

d ≥ r + 1 and n−mr ≤ k ≤ n− r

With ball-collision decoding, heavy computation occurs in sets S and T with
(
k1
p1

)(
k2
p2

)(
ℓ1
q1

)(
ℓ2
q2

)
choices of (x0, x1, y0, y1) [1]. Parameter restrictions allow for us to pick low values of
ℓ1, ℓ2, q1, q2 to lessen operations. Parameter restrictions do not allow much leeway in our
choices for p1, p2, k1, k2 as k1 + k2 = k = |Z|. If k is of sufficient size, then the success
probability for small values of p1, p2 will be impractical, as we would be assuming most of the
errors occurr in {1, ..., n} \ Z which has size |{1, ..., n} \ Z| = n− k. Thus, we disregard
standard coding theory practice of having k

n ≈ 1
2 , as larger k values with a still reasonable

error correcting capability are most beneficial to us. This aligns with the security parameters
proposed in the ball-collision decoding paper, with 2384

3178 ≈ 3
4 and 5208

6944 ≈ 3
4 .

References

[1] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Smaller decoding exponents:
ball-collision decoding, 2011.5.27

[2] Matthieu Finiasz, NP-completeness of Certain Sub-classes of the Syndrome Decoding
Problem, 2009.12.02

[3] Suanne Au, Christina Eubanks-Turner, Jennifer Everson, The McEliece Cryptosystem,
2003.09.17

[4] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Handbook of Applied
Cryptography, 1996

[5] D.C. Hankerson, Gary Hoffman, D.A. Leonard, Charles C. Lindner, K.T. Phelps, C.A.
Rodger, J.R. Wall, Coding Theory and Cryptography: The Essentials Second Edition,
Chapman & Hall/CRC Pure and Applied Mathematics, 2000.08.04

[6] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, Volume 16,
North-Holland Mathematical Library, 1983.01.01

Appendix

Full Code for the Ball-collision Decoding Algorithm

time for x:=1 to 1 do

n:= ;

k:= ;

w:= ;

k1:= ;

k2:=k-k1;

l1:= ;

l2:= ;

p1:= ;

p2:= ;

q1:= ;

q2:= ;

H:= ;

s:= ;

H:=Transpose(H);

Z:={};
Zc:={};
Zcv:={};
RS:={1..n};

repeat

ran:=Random(RS);

Zct:=Zcv join {H[ran]};
if IsIndependent(Zct) eq true then

Zcv:=Zct;

Zc:=Zc join {ran};
end if;

RS:=RS diff {ran};
until #Zc eq n-k;

Z:={1..n} diff Zc;

H:=Transpose(H);

Fk1:=RandomSubset(Z, k1);

Fk2:=Z diff Fk1;

Fl1:=RandomSubset(Zc, l1);

Zi:= Zc diff Fl1;

Fl2:=RandomSubset(Zi, l2);

Fnkl1l2:= Zi diff Fl2;

Z:=SetToSequence(Z);

Zc:=SetToSequence(Zc);

V:=Matrix(GF(2),n-k,n-k,[]);

for i:=1 to n-k do

for j:=1 to n-k do

V[i,j]:=H[i,Zc[j]];

end for;

end for;

U:=V-̂1;

UH:=Transpose(U*H);

A:=Matrix(GF(2),k,n-k,[]);

for i:=1 to #Z do

A[i]:=UH[Z[i]];

end for;

A:=Transpose(A);

A1:=ExtractBlock(A, 1, 1, l1+l2, k);

A2:=ExtractBlock(A, n-k-(n-k-l1-l2)+1, 1,n-k-l1-l2, k);

Us:=U*s;

s1:=ExtractBlock(Us, 1, 1, l1+l2, 1);

s2:=ExtractBlock(Us, n-k-(n-k-l1-l2)+1, 1,n-k-l1-l2, 1);

T:=[];

ct:=1;

T1:=Subsets({1..k2}, p2);

T2:=Subsets({1..l2}, q2);

for a in T1 do

y0:=Matrix(GF(2),k,1,[]);

if #T1 ne 0 then

for b in a do

y0[k1+b,1]:=1;

end for;

end if;

for c in T2 do

y1:=Matrix(GF(2),l1+l2,1,[]);

if #T2 ne 0 then

for d in c do

y1[l1+d,1]:=1;

end for;

end if;

v:=A1*y0+y1+s1;

if #T eq 0 then

Append(∼T,<v,{<y0,y1>}>);
else

for h:=1 to ct do

if T[ct][1] eq v then

T[ct][2]:=T[ct][2] join {<y0,y1>};
break h;

else

Append(∼T,<v,{<y0,y1>}>);
ct:=ct+1;

end if;

end for;

end if;

end for;

end for;

S:=[];

ct:=1;

S1:=Subsets({1..k1}, p1);

S2:=Subsets({1..l1}, q1);

for a in S1 do

x0:=Matrix(GF(2),k,1,[]);

if #S1 ne 0 then

for b in a do

x0[b,1]:=1;

end for;

end if;

for c in S2 do

x1:=Matrix(GF(2),l1+l2,1,[]);

if #S2 ne 0 then

for d in c do

x1[d,1]:=1;

end for;

end if;

v:=A1*x0+x1;

for r:=1 to #T do

if T[r][1] eq v then

for dl in T[r][2] do

cl:=Vector(A2*(x0+dl[1])+s2);

if Weight(cl) eq w-p1-p2-q1-q2 then

t1:=x0+dl[1];

t2:=x1+dl[2];

t3:=A2*(x0+dl[1])+s2;

R:=Matrix(GF(2),n,1,[]);

for i in Z do

R[i]:=t1[Index(Z, i)];

end for;

for i:=1 to l1+l2 do

R[Zc[i]]:=t2[i];

end for;

for i:=1 to n-k-l1-l2 do

R[Zc[i+l1+l2]]:=t3[i];

end for;

print Vector(R);

break x;

end if;

end for;

end if;

end for;

end for;

end for;

end for;

	Introduction
	Decoding Long Linear Codes
	The McEliece Cryptosystem
	The Ball-collision Decoding Algorithm
	Notation

	Implementation of the Ball-collision Decoding Algorithm
	Magma Computational Algebra
	Code
	Dimensions
	Sets S and T

	The Golay Code
	Hamming Bound
	Ball-collision Decoding on the Golay Code

	Long Linear Codes
	Ball-collision Decoding on Random Linear Codes

	Goppa Codes
	Constructing Goppa Codes
	Efficient Decoding
	Ball-collision decoding on Goppa Codes

	Conclusions
	Iteration Cost
	McEliece Parameters

